Modal Control Model and Vibration Control of SCLD Plate
-
摘要: 为有效抑制薄板在外界激励下的低频振动,对机敏约束层阻尼(SCLD)结构进行了主动振动控制研究.首先,考虑了黏弹性材料随温度与频率变化的阻尼特性,结合GHM阻尼模型建立了耦合系统有限元动力学分析模型;其次,考虑到结构动力学模型自由度庞大,采用物理坐标下自由度动力缩聚和状态方程下复模态截断进行了两次降阶,并通过复模态空间向实模态空间转换,得到了低维实模态控制模型;最后,通过模态实验验证了理论模型,并基于低阶控制模型设计了振动控制器,证明了研究方法的正确性.研究结果表明,采用本文的组合降阶方法可以有效地对SCLD结构进行降阶,对模态控制模型主动控制取得了良好控制效果:在单位阶跃激励下,振动响应衰减时间从0.20 s缩短为0.08 s;在随机白噪声激励作用下,振动响应均方根值降低了39.65%.Abstract: To effectively suppress the low frequency vibration of thin plate, the active vibration control of smart constrained layer damping (SCLD) structure was studied. Firstly, the damping characteristics of viscoelastic material varying with temperature and frequency were considered, and coupling finite element model for dynamics analysis was established based on GHM damping model. To address the large numbers of degrees of freedom of dynamics analysis model, model reduction was conducted through dynamic condensation in physical coordinate and complex modal truncation in state equation, and low-dimensional real modal control model was obtained from the conversion of complex modal space to the real modal space. Finally, the theoretical model was verified by modal experiment, and vibration controller was designed based on low-dimensional control model to validate the proposed method. The results show that the proposed combination reduction method is effective for SCLD structure. For the modal control model, the vibration control effect is desirable: the decay time of vibration response is shortened from 0.20 s to 0.08 s under unit step excitation, and the root mean square values of vibration response decreases 39.65% under gauss white noise excitation.
-
BALAMURUGAN V, NARAYANAN S. Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment [J]. Journal of Sound and Vibration, 2002, 249(2): 227-250. SHI Yinming, HUA Hongxing, SOL H. The finite element analysis and experimental study of beams with active constrained layer damping treatments 顾仲权,马扣根,陈卫东. 振动主动控制 [J]. Journal of Sound and Vibration, 2004, 278(24): 343-363. SHI Y M, LI Z F, HUA H X, et al. The modelling and vibration control of beams with active constrained layer damping 曹友强,邓兆祥,鲜淼峰,等. 基于机敏约束阻尼技术的结构动态性能主动控制 曹友强,邓兆祥,王攀,等. 机敏约束层阻尼减振板耦合系统有限元模型 [M]. 北京:国防工业出版社,1997: 94-95. LIU Tianxiong, HUA Hongxing, ZHANG Zhiyi. Robust control of plate vibration via active constrained layer damping MCTAVISH D J, HUGHES P C. Modeling of linear viscoelastic space structures [J]. Journal of Sound and Vibration, 2001, 245(5): 785-800. GOLLA D F, HUGHES P C. Dynamics of viscoelastic structures a time-domain finite element formulation 罗虹,李军,曹友强,等. 有限元模型动力缩聚中主副自由度选取方法 [J]. 汽车工程学报,2011,1(1): 18-26. CAO Youqiang, DENG Zhaoxiang, XIAN Miaofeng, et al. Active control of structure dynamic performance based on smart constrained layer damping technology [J]. Chinese Journal of Automotive Engineering, 2011, 1(1): 18-26. 李德葆, 陆秋海. 实验模态分析与应用 陈前,朱德懋. 弹性-粘弹性复合结构模态理论 李兴泉,邓兆祥,李传兵,等. 模态综合的子结构主模态截断方法 [J]. 重庆大学学报,2012,35(10): 9-16. CAO Youqiang, DENG Zhaoxiang, WANG Pan, et al. Finite element model of coupled systems for vibration reduction plates with smart constrained layer damping [J]. Journal of Chongqing University, 2012, 35(10): 9-16. MEIROVITCH L. Dynamic and control of structures BOUC R, FRIOT E. Contrle optimal par retroaction du rayonnement d'une plaque munie de capteurs et d'actionneurs pizo-lectriques non colocaliss CHANTALAKHANA C, STANWAY R. Active constrained layer damping of clamped-clamped plate vibrations [J]. Thin-Walled Structures, 2004, 42(3): 427-448. 张亮,杜海平,石银明,等. ZN-1型粘弹性材料的GHM模型参数确定(英文) [J]. Vibration and Acoustics, 1993, 115(1): 103-110. [J]. Applied Mechanics, 1985, 52(7): 897-907. [J]. 机械设计,2010,27(12): 11-14. LUO Hong, LI Jun, CAO Youqiang, et al. Methods for selecting the master and slave degrees of freedom in dynamic condensation technique of finite element models [J]. Journal of Machine Design, 2010, 27(12): 11-14. [M]. 北京:科学出版社,2001: 78-79. [J]. 固体力学学报,1990,11(1): 23-33. CHEN Qian, ZHU Demao. Modal theory of elastic-viscoelastic composite structures [J]. Acta Mechanica Solida Sinica, 1990, 11(1): 23-33. [J]. 西南交通大学学报,2014,49(1): 173-178. LI Xingquan, DENG Zhaoxiang, LI Chuanbing, et al. Substructure normal modes selection method for component mode synthesis [J]. Journal of Southwest Jiaotong University, 2014, 49(1): 173-178. [M]. New York: John Wiley Sons, 1990: 89-95. [C]//2eme Colloque GDR Vibroacoustique. Marseille:, 1996: 229-248. [J]. Journal of Sound and Vibration, 2001, 241(5): 755-777. [J]. 稀有金属材料与工程,2002,31(2): 92-95. ZHANG Liang, DU Haiping, SHI Yinming, et al. Parametric determination for GHM of ZN-1 viscoelastic material [J]. Rare Metal Materials and Engineering, 2002, 31(2): 92-95.
点击查看大图
计量
- 文章访问数: 858
- HTML全文浏览量: 62
- PDF下载量: 316
- 被引次数: 0