New Mathematical Model for GNSS Relative Positioning Resolving
-
摘要: 为克服传统模型在全球导航卫星系统(GNSS)相对定位解算中存在的不足,提出了一种新的解算模型.与传统的一阶泰勒展开式不同,该模型利用参考站坐标事先已知,可使最小二乘解算过程中系数矩阵保持不变,从而能够清晰地描述最小二乘解算的收敛过程,有利于定位结果的误差分析和提高模糊度函数法等坐标域搜索方法的效率.实验结果显示,新模型与传统的一阶泰勒展开式的定位精度一致,验证了模型的有效性和可靠性,可以在相对定位解算中代替一阶泰勒展开式使用.Abstract: In order to overcome the problem of the traditional model, a new model was proposed for relative positioning resolving of global navigation satellite system (GNSS). With the coordinates of reference station known in advance, this model is different from the traditional model that its coefficient matrix remains unchanged in resolving, so it is convenient to describe the converging process of the least squares and benefit for error analysis and improving search efficiency in coordinate domain, and this model has certain application potentiality. The experimental results show that the proposed model has the same position accuracy as the traditional model, i.e., the first-order Taylor series expansion, to verify its validity and reliability, so it can be used to replace the traditional model in relative positioning.
-
HATCH R. The synergism of GPS code and carrier measurements HATCH R. Instantaneous ambiguity resolution [C]//Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning. Las Cruces, NM:, 1982: 1213-1232. CHEN D, LACHAPELLE G. A comparison of the FASF and least-squares search algorithms for on-the-fly ambiguity resolution [C]//Kinematic Systems in Geodesy, Surveying, and Remote Sensing. New York: Springer, 1990: 299-308. LANDAU H, EULER H J. On-the-fly ambiguity resolution for precise differential positioning FENG W, HUANG D F, ZHOU L T, et al. Rapid GNSS ambiguity resolution using dual frequency integer relationship constrained algorithm [J]. Navigation, 1995, 42(2): 371-390. TEUNISSEN P J G, JONGE P J, TIBERIUS C. Performance of the LAMBDA method for fast GPS ambiguity resolution TEUNISSEN P J G. Least-squares estimation of the integer GPS ambiguities [C]//Proceedings of ION GPS 1992. Albuquerque, NM: ION, 1992: 607-613. TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation MONIKES R, WENDEL J, TROMMER G F. A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints JI S Y, CHEN W, ZHAO C M, et al. Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods [J]. Survey Review, 2014, 46(336): 175-183. COUNSELMAN C C, GOUREVITCH S A. Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system [J]. Navigation, 1997, 44(3): 373-383. MADER G L. Rapid static and kinematic global positioning system solutions using the ambiguity function technique HAN S W, RIZOS C. Improving the computational efficiency of the ambiguity function algorithm [C]//Invited Lecture, Section IV: Theory and Methodology. Beijing:, 1993: 1-16. CELLMER S, WIELGOSZ P, RZEPECKA Z. Modified ambiguity function approach for GPS carrier phase positioning HAN S W. Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning [J]. Journal of Geodesy, 1995, 70(1/2): 65-82. 周忠谟. GPS卫星测量原理与应用 PARK C, KIM I, LEE J G, et al. Efficient ambiguity resolution using constraint equation [C]//Proceedings of ION GNSS 2005. Long Beach, CA: ION, 2005: 81-87. [J]. GPS Solutions, 2007, 11(4): 259-268. [J]. IEEE Transactions on Geosciences and Remote Sensing, 1981, 19(4): 244-252. [J]. Journal of Geophysical Research, 1992, 97(B3): 3271-3283. [J]. Journal of Geodesy, 1996, 70(6): 330-341. [J]. Journal of Geodesy, 2010, 84(4): 267-275. [J]. Journal of Geodesy, 1997, 71(6): 351-361. [M]. 2版. 北京:测绘出版社,2004: 148-150. [C]// Proceedings of IEEE PLANS. Atlanta, GA: IEEE, 1996: 277-284.
点击查看大图
计量
- 文章访问数: 766
- HTML全文浏览量: 69
- PDF下载量: 531
- 被引次数: 0