Temperature Control Strategy for Water-Cooled Proton Exchange Membrane Fuel Cells
-
摘要: 为了解决传统温度控制策略在质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电堆实际操作过程中存在的强耦合性,避免在电堆电流大幅加载时电堆内部出现短时高温,提出了一种基于电堆空气入口压力变化的改进温度控制策略.该策略以冷却水入口压力为调节目标,通过调节冷却水泵的转速控制冷却水流速,调节散热器风扇转速控制电堆冷却水入口温度.考虑电堆极板耐压的条件下,在自主搭建的多功能PEMFC测试平台上对传统控制策略与改进控制策略做了实验对比.结果表明,改进温度控制策略使冷却水入口温度最大超调量减小34.7%,冷却水出入口最大温度偏差减小17.8%,实现了较高的控制精度;电流从120 A降低到90 A时,调整时间最少缩短100 s,提高了系统的响应速度,满足燃料电池发电系统对温度控制的需求.Abstract: An improved temperature control strategy by variation of air inlet pressure was proposed to solve the strong coupling problem that exists in the process of actual operation of a proton exchange membrane fuel cell (PEMFC) and to avoid the occurrence of instantaneous high temperature in the internal stack during a large amplitude. In order to adjust the cooling water inlet pressure, this strategy controls the velocity of cooling water by adjusting the speed of cooling water pump, and controls the inlet temperature of cooling water by regulating the rotational speed of the radiator fan. Taking into account the pressure-withstanding ability of stack plates, comparative experiments between the traditional control strategy and the improved control strategy were made on a self-developed multifunctional PEMFC test platform. The results show that the improved temperature control strategy could reduce the maximum overshoot of the cooling water inlet temperature by 34.7% and decrease the maximum difference between the cooling water inlet and outlet temperatures by 17.8%. Consequently, a higher control precision was achieved, and the response speed of system was improved with a maximum time reduction of more than 100 s when the current is reduced from 120 A to 90 A. Therefore, this strategy can meet the requirements on the temperature control of fuel cell systems.
-
Key words:
- PEMFC /
- temperature control strategy /
- pressure tracking /
- decoupling control
-
LIU Z, ZHANG H, WANG C, et al. Numerical simulation for rib and channel position effect on PEMFC performances 陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势 [J]. International Journal of Hydrogen Energy, 2010, 35(7): 2802-2806. KANDLIKAR S G, LU Z. Thermal management issues in a PEMFC stack: a brief review of current status 秦敬玉,徐鹏,王利生,等. 质子交换膜燃料电池(PEMFC)发动机循环水管理模型 [J]. 西南交通大学学报,2009,44(1): 1-6. CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell YU X, ZHOU B, SOBIESIAK A. Water and thermal management for Ballard PEM fuel cell stack [J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. 周苏,俞林炯,高昆鹏,等. 质子交换膜燃料电池系统中冷器建模与仿真 刘洋,全书海,张立炎. 燃料电池发电系统温度控制策略研究 [J]. Applied Thermal Engineering, 2009, 29(7): 1276-1280. WANG M H, GUO H, MA C F. Temperature measurement technologies and their application in the research of fuel cells temperature measurement technologies and their application in the research of fuel cells [J]. 太阳能学报,2001,10(22): 385-389. QIN Jingyu, XU Peng, WANG Lisheng, et al. Model for management of cycling water of a proton exchange membrane fuel cell (PEMFC) engine 卫东,郑东,褚磊民. 空冷型质子交换膜燃料电池堆最优性能输出控制 [J]. Acta Energiae Solaris Sinica, 2001, 10(22): 385-389. 王斌锐,金英连,褚磊民,等. 空冷燃料电池最佳温度及模糊增量PID控制 LI Q, CHEN W, LIU S, et al. Temperature optimization and control of optimal performance for a 300 W open cathode proton exchange membrane fuel cell 谷靖,卢兰光, 欧阳明高. 燃料电池系统热管理子系统建模与温度控制 [J]. Journal of Power Sources, 2005,147(2): 184-195. HU P, CAO G, ZHU X, et al. Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells [J]. 系统仿真学报,2013,25(4): 769-773. ZHOU Su, YU Linjiong, GAO Kunpeng, et al. Modeling and simulation analysis of intercooler in PEMFC system [J]. Journal of System Simulation, 2013, 25(4): 769-773. [J]. 武汉理工大学学报,2010,32(2): 268-272. LIU Yang, QUAN Shuhai, ZHANG Liyan. Fuzzy-PID based temperature control strategy for the fuel cell power generation system [J]. Journal of Wuhan University Technology, 2010, 32(2): 268-272. [C]//1st International Conference on Fuel Cell Science: Energing and Technology. New York: ASME, 2003: 95-100. [J]. 化工学报,2010,61(5): 1293-1300. WEI Dong, ZHENG Dong, CHU Leimin. Output control of optimal performance for air-cooling PEMFC stack [J]. Journal of Chemical Industry and Engineering, 2010, 61(5): 1293-1300. [J]. 中国电机工程学报,2009,29(8): 109-114. WANG Binrui, JIN Yinglian, CHU Leimin, et al. Temperature optimization and fuzzy incremental PID control for air-breathing proton exchange membrane fuel cell stack [J]. Proceedings of the CSEE, 2009,29(8): 109-114. [J]. Procedia Engineering, 2012, 29(1): 179-183. [J]. 清华大学学报:自然科学版,2007,47(11): 2036-2039. GU Jing, LU Languang, OUYANG Minggao. Thermal management subsystem model and temperature control for fuel cells [J]. Journal of Tsinghua University:Science and Technology, 2007, 47(11): 2036-2039. [J]. International Journal of Hydrogen Energy, 2010, 35(17): 9110-9123.
点击查看大图
计量
- 文章访问数: 1228
- HTML全文浏览量: 100
- PDF下载量: 835
- 被引次数: 0