Phase Field Modeling on Effects of Static Magnetic Field on Oscillatory Deformation of Molten Droplet
-
摘要: 为了解静磁场作用下熔融液滴振荡过程的特征,采用相场法数值模拟了硅熔体液滴的界面变形和内部对流过程,分析了轴向静磁场对初始形状为二阶Legendre函数硅熔体液滴界面振荡和内部对流的影响.研究表明:施加静磁场以后,液滴收缩较快,说明静磁场抑制了液滴内部流动;随着磁场强度从0增加至0.9 T,流函数最大值从0.57减小到0.08,液滴的界面振荡和内部对流逐渐减弱,液滴的长短轴比更快趋近于1,但磁场对液滴的振荡周期没有明显影响,显示相场法能够模拟密度较大的熔融液滴的界面振荡和内部对流过程.Abstract: In order to study the characteristics of oscillatory process of a molten silicon droplet under static magnetic field, the phase field method was adopted to numerically simulate the interface oscillation and internal fluid convection of a molten silicon droplet. The influence of an axial static magnetic field on the internal convection and interface oscillation of a molten silicon droplet with an initial shape of the second-order Legendre function was analyzed. The numerical result exhibits that the shrink of the droplet under static magnetic field is faster than that without magnetic field. The static magnetic field suppresses the fluid convection inside the droplet. As the imposed magnetic field intensity increases from 0 to 0.9 T, the maximum values of stream function reduce from 0.57 to 0.08, and the internal convection and interface oscillation are weakened gradually. Under magnetic field, the ratio of long-axis to short-axis of droplet quickly tends to 1. However, the magnetic field has almost no influence on oscillation frequency of droplet. The investigation indicates that the phase-field modeling can effectively simulate the interface oscillation and internal convection of the molten droplet even with high density.
-
Key words:
- phase field model /
- static magnetic field /
- droplet /
- molten silicon
-
YASUD H, OHNAKA I, NINOMIYA Y, et al. Levitation of metallic melt by using the simultaneous imposition of the alternating and the static magnetic fields [J]. Journal of Crystal Growth, 2004, 260(3/4): 475-485. KOBATAKE H, FUKUYAMA H, MINATO I, et al. Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field KOBATAKE H, FUKUYAMA H, MINATO I, et al. Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field FUKUYAMA H, TAKAHASHI K, SAKASHITA S, et al. Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field [J]. Journal of Applied Physics, 2008, 104(5): 054901-1-8. BOJAREVICS V, PERICLEOUS K. Modelling electromagnetically levitated liquid droplet oscillations [J]. Applied Physics Letters, 2007, 90(9): 094102-1-3. TSUKADA T, SUGIOKA K I, TSUTSUMINO T, et al. Effect of static magnetic field on a thermal conductivity measurement of a molten droplet using an electromagnetic levitation technique BADALASSI V E, CENICEROS H D. Computation of multiphase systems with phase field models YUE P T, FENG J J, LIU C, SHEN J. A diffuse-interface method for simulating two-phase flows of complex fluids [J]. ISIJ International, 2009, 49(9): 1436-1442. KIM J. A continuous surface tension force formulation for diffuse-interface models [J]. ISIJ International, 2003, 43(6): 890-898. DING Hang, PETER D S, SHU Chang. Diffuse interface model for incompressible two-phase flows with large density ratios 石万元,张凤超,田小红.相场法模拟悬浮熔融硅液滴内部对流及自由界面变形现象 [J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 5152-5157. JIANG Guangshan, SHU Chiwang. Efficient implementation of weighted ENO schemes VORST H A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems WATANABE T. Numerical simulation of oscillations and rotations of a free liquid droplet using the level set method [J]. Journal of Computational Physics, 2003, 190(2): 371-397. WATANABE T. Zero frequency shift of an oscillating-rotating liquid droplet PROSPERETTI A. Normal-mode analysis for the oscillations of a viscous-liquid drop in an immiscible liquid [J]. Journal of Fluid Mechanics, 2004, 515: 293-317. BASARAN O A. Nonlinear oscillations of viscous liquid drops [J]. Journal of Computational Physics, 2005, 204(2): 784-804. [J]. Journal of Computational Physics, 2007, 226(2): 2078-2095. [J]. 西南交通大学学报,2012,47(4): 692-697. SHI Wanyuan, ZHANG Fengchao, TIAN Xiaohong, Phase field modeling of internal convection and free interface deformation of levitated droplet of molten silicon [J]. Journal of Southwest Jiaotong University, 2012, 47(4): 692-697. [J]. Journal of Computational Physics, 1996, 126(1): 202-228. [J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13(2): 631-644. [J]. Computers Fluids, 2008, 37(2): 91-98. [J]. Physics Letters, 2008, 372(4): 482-485. [J]. Journal de Mcanique, 1980, 19(1): 149-182. [J]. Journal of Fluid Mechanics, 1992, 241: 169-198.
点击查看大图
计量
- 文章访问数: 694
- HTML全文浏览量: 62
- PDF下载量: 383
- 被引次数: 0