Hyperspectral Image Classification Based on Structured Dictionary Learning
-
摘要: 为提高高光谱遥感图像的分类精度,提出了一种新的结构性稀疏表示及字典学习的高光谱遥感图像分类方法.该方法能同时利用高光谱遥感图像像素间的空间及光谱关系得到表示每个像素的字典,被划分为同一像素组的像素具有通用的稀疏模式;由字典计算图像的稀疏表示系数获得遥感图像的稀疏表示特征;利用线性支持向量机算法实现对高光谱遥感图像的分类.对AVIRIS和ROSIS高光谱遥感图像进行的实验结果表明:提出的方法比普通字典学习分类精度分别提高0.041 1和0.046 6,Kappa系数分别提高0.179 3和0.056 3.Abstract: In order to improve the classification accuracy of hyperspectral images, a new structured dictionary-based method for hyperspectral image classification was proposed. This method incorporates both spatial and spectral characteristics of hyperspectral images to obtain a dictionary of each pixel, the pixels in an identical pixel group have a common sparsity pattern;image sparsity representation coefficients are calculated in light of the dictionary to gain sparse representation features of hyperspectral images;the classification of hyperspectral images is determined using a linear support vector machine. Experiments on AVIRIS and ROSIS hyperspectral images were carried out. The experimental results show that compared with the common dictionary learning, the classification accuracy is respectively raised by 0.041 1 and 0.046 6, the Kappa coefficient is improved by 0.179 3 and 0.056 3, respectively.
-
SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation PLAZA A, BENEDIKTSSON J A, BOARDMAN J, et al. Recent advances in techniques for hyperspectral image processing [J]. IEEE Signal Processing Magazine, 2002, 19(1): 12-16. ROBINSON R K, JENNINGS S A. Hyperspectral imaging on the international space station: an innovative approach to commercial development of space TURK M, PENTLAND A. Eigenfaces for recogni-tion [J]. Remote Sensing of Environment, 2009, 113(9): 110-122. BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [J]. American Institute of Aeronautics and Astronautics, 2004(9): 1-8. LI J, BIOUCAS-DIAS J M, PLAZA A. Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning BAZI Y, MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. CHARLES A S, OLSHAUSEN B A, ROZELL C J. Learning sparse codes for hyperspectral imagery [J]. IEEE Transactions on Pattern Analysis and Machine, 1997, 19(7): 711-720. SOLTANI-FARANI A, RABIEE H R, HOSSEINI S A. Spatial-aware dictionary learning for hyperspectral image classification COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors MAIRAL J, BACH F, PONCE J, et al. Online learning for matrix factorization and sparse coding [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 844-856. 宋相法,焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类 宋琳,程咏梅,赵永强. 基于稀疏表示模型和自回归模型的高光谱分类 [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374-3385. TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039. [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 963-978. [J]. IEEE Transactions on geoscience and remote sensing, 2015, 53(1): 527-541. [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60. [J]. 电子与信息学报,2012,34(2): 268-272. SONG Xiangfa, JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral [J]. Information Journal of Electronics Information Technology, 2012, 34(2): 268-272. [J]. 光学学报,2012,32(3): 314-320. SONG Lin, CHEN Yongmei, ZHAO Yongqiang, Hyper-spectrum classification based on sparse representation model and auto-regressive model [J]. Acta Optica Sinica, 2012, 32(3): 314-320. [J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267-288.
点击查看大图
计量
- 文章访问数: 885
- HTML全文浏览量: 73
- PDF下载量: 577
- 被引次数: 0