• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于结构性字典学习的高光谱遥感图像分类

秦振涛 杨武年 杨茹 潘佩芬 邓琮

秦振涛, 杨武年, 杨茹, 潘佩芬, 邓琮. 基于结构性字典学习的高光谱遥感图像分类[J]. 西南交通大学学报, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020
引用本文: 秦振涛, 杨武年, 杨茹, 潘佩芬, 邓琮. 基于结构性字典学习的高光谱遥感图像分类[J]. 西南交通大学学报, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020
QIN Zhentao, YANG Wunian, YANG Ru, PAN Peifen, DENG Cong. Hyperspectral Image Classification Based on Structured Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020
Citation: QIN Zhentao, YANG Wunian, YANG Ru, PAN Peifen, DENG Cong. Hyperspectral Image Classification Based on Structured Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020

基于结构性字典学习的高光谱遥感图像分类

doi: 10.3969/j.issn.0258-2724.2015.02.020
基金项目: 

国家自然科学基金资助项目(41071265,41372340)

高等学校博士学科点专项科研基金资助项目(20105122110006)

国土资源部地学空间信息技术重点实验室开放基金资助项目(KLGSIT2014-03)

详细信息
    作者简介:

    秦振涛(1982-),男,讲师,博士研究生,研究方向为遥感图像处理与压缩感知,E-mail:309507443@qq.com

    通讯作者:

    杨武年(1954-),男,教授,博士生导师,研究方向为遥感图像识别、地质遥感等,E-mail:ywn@cdut.edu.cn

Hyperspectral Image Classification Based on Structured Dictionary Learning

  • 摘要: 为提高高光谱遥感图像的分类精度,提出了一种新的结构性稀疏表示及字典学习的高光谱遥感图像分类方法.该方法能同时利用高光谱遥感图像像素间的空间及光谱关系得到表示每个像素的字典,被划分为同一像素组的像素具有通用的稀疏模式;由字典计算图像的稀疏表示系数获得遥感图像的稀疏表示特征;利用线性支持向量机算法实现对高光谱遥感图像的分类.对AVIRIS和ROSIS高光谱遥感图像进行的实验结果表明:提出的方法比普通字典学习分类精度分别提高0.041 1和0.046 6,Kappa系数分别提高0.179 3和0.056 3.

     

  • SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation
    PLAZA A, BENEDIKTSSON J A, BOARDMAN J, et al. Recent advances in techniques for hyperspectral image processing
    [J]. IEEE Signal Processing Magazine, 2002, 19(1): 12-16.
    ROBINSON R K, JENNINGS S A. Hyperspectral imaging on the international space station: an innovative approach to commercial development of space
    TURK M, PENTLAND A. Eigenfaces for recogni-tion
    [J]. Remote Sensing of Environment, 2009, 113(9): 110-122.
    BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
    [J]. American Institute of Aeronautics and Astronautics, 2004(9): 1-8.
    LI J, BIOUCAS-DIAS J M, PLAZA A. Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    BAZI Y, MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images
    IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data
    [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
    CHARLES A S, OLSHAUSEN B A, ROZELL C J. Learning sparse codes for hyperspectral imagery
    [J]. IEEE Transactions on Pattern Analysis and Machine, 1997, 19(7): 711-720.
    SOLTANI-FARANI A, RABIEE H R, HOSSEINI S A. Spatial-aware dictionary learning for hyperspectral image classification
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors
    MAIRAL J, BACH F, PONCE J, et al. Online learning for matrix factorization and sparse coding
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 844-856.
    宋相法,焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类
    宋琳,程咏梅,赵永强. 基于稀疏表示模型和自回归模型的高光谱分类
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374-3385.
    TIBSHIRANI R. Regression shrinkage and selection via the lasso
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.
    [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 963-978.
    [J]. IEEE Transactions on geoscience and remote sensing, 2015, 53(1): 527-541.
    [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488.
    [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.
    [J]. 电子与信息学报,2012,34(2): 268-272. SONG Xiangfa, JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral
    [J]. Information Journal of Electronics Information Technology, 2012, 34(2): 268-272.
    [J]. 光学学报,2012,32(3): 314-320. SONG Lin, CHEN Yongmei, ZHAO Yongqiang, Hyper-spectrum classification based on sparse representation model and auto-regressive model
    [J]. Acta Optica Sinica, 2012, 32(3): 314-320.
    [J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267-288.
  • 加载中
计量
  • 文章访问数:  885
  • HTML全文浏览量:  73
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-10
  • 刊出日期:  2015-04-25

目录

    /

    返回文章
    返回