Improved Incomplete Derivative PID Control of Axial Active Magnetic Bearing
-
摘要: 为了减少电磁轴承控制中测量噪声的干扰,提高电磁轴承控制的稳态精度,以立式电机的主动控制电磁轴承为研究对象,分析了测量噪声对传统PID控制的影响,并针对一阶不完全微分PID控制和传统PID控制不能满足系统控制性能要求的情况, 提出一种基于二阶不完全微分PID控制的改进算法.采用MATLAB的Simulink搭建了仿真模型,利用C语言和磁轴承控制平台进行了算法的试验验证.仿真和试验结果表明,改进的算法能够改善磁轴承系统的静态性能,气隙的稳态误差约为20 m,比传统PID、带一阶滤波器的不完全微分PID减小了约50% (30 m),证明了该算法的有效性.Abstract: In order to reduce the interference of measurement noise and improve the steady-state precision of magnetic bearing control, the active magnetic bearing of a vertical motor was adopted to analyze the influence of measurement noise on the traditional PID control. Considering that the incomplete derivative PID controller with the first-order filter and the traditional PID controller cannot meet the requirement in performance of controlling the measurement noises, an improved algorithm for the incomplete derivative PID control with the second-order filter was proposed. A simulation platform was then built in Simulink of MATLAB, and the improved algorithm was verified experimentally on the active magnetic bearing platform using C programming language. Results of simulation and experiments show that the improved algorithm can improve the static performance of the magnetic bearing. Using the incomplete derivative PID controller with the second-order filter, the steady-state error of the air gap of the magnetic bearing was about 20 m, reduced by nearly 50% (i.e., 30 m in magnitude) compared to the traditional PID controller and the incomplete derivative PID controller with the first-order filter. This proves the effectiveness of the improved algorithm.
-
Key words:
- magnetic bearing /
- PID controller /
- digital filter /
- stability
-
虞烈.可控磁悬浮转子系统 [M].北京:科学出版社,2003: 4-5. 朱熀秋,邓智泉,严仰光,等. 无轴承电机的原理及研究现状 FUKATA S, YUTANIK. Characteristics of electromagnetic systems of magnetic bearings biased with permanent magnets MCMULLEN P T,HUYNH C S,HAYES R J. Combination radial-axial magnetic bearing [J]. 微电机,2000,33(6): 29-31. ZHU Huangqiu, DENG Zhiquan, YAN Yangguang, et al. The principle of bearingless motor and its study status TAKAMOTO Y, CHIBA A, FUKAO T. Test results on a prototype bearing less induction motor with five-axis magnetic suspension [J]. Micromotor, 2000, 33(6): 29-31. 曾励,朱晃秋,曾学明,等. 永磁偏置的混合磁悬浮轴承的研究 [C]//Proceedings of 6th International Symposium on Magnetic Bearings. Cambridge: MIT, 1998: 234-243. 程佳驹,成秋良,潘伟,等. 无轴承电机轴向混合磁轴承自抗扰控制 STEWART D. A platform with six degrees of freedom ZHONG Yi, LIU Quan. Improved adaptive filtering application based on DSP for active magnetic bearing system [C]//Proceedings of 7th International Symposium on Magnetic Bearings. Switzerland: [s.n.], 2000: 473-478. 刘合祥,胡敏强,余海涛,等. 基于磁悬浮小车系统的自适应模糊滑模-PID混合控制方案 蓝益鹏,邱超. 磁悬浮永磁直线电动机悬浮系统模糊PID控制器的设计 [C]//Proceedings of 7th International Power Electronics Conference. Yokohama: 肖闽进,张建生,钱显毅. 基于模糊自适应的主动磁悬浮系统稳定性控制 [s.n.], 1995: 334-339. 卢立户,刘海娟,诸德宏,等. 轴向主动磁轴承的模糊自抗扰控制 丁力,房建成,魏彤,等.一种抑制扰动的轴向磁轴承鲁棒控制新方法 刘金琨. 先进PID控制MATLAB仿真 [J]. 中国机械工程,1999,10(4): 387-389. ZENG Li, ZHU Huangqiu, ZENG Xueming, et al. Research of permanent magnet biased hybrid magnetic levitation bearing [J]. Chinese Mechanical Engineering,1999, 10(4): 387-389. [J]. 电机与控制学报,2008,12(4): 365-370. CHENG Jiaju, CHENG Qiuliang, PAN Wei, et al. Anti-interference control of bearing less motor axial hybrid magnetic bearing [J]. Electric Machines and Control, 2008, 12(4): 365-370. [C]//Proceedings of the Institution of Mechanic Engineer. 1965, 180: 371-386. [C]//Proceedings of 8th International Conference on Signal Processing. [S.l.]: IEEE, 2006: 16-20. [J]. 电工技术学报,2013,28(6): 93-100. LIU Hexiang, HU Mingqiang, YU Haitao, et al. An scheme using adaptive fuzzy sliding mode PID on magnetic vehicle [J]. Transactions of China Electrotechnical Society, 2013, 28(6): 93-100. [J]. 机床与液压,2013,41(7): 94-100. LAN Yipeng, QIU Chao. The controller design using fuzzy pid on magnetic levitation permanent magnet linear motor [J]. Machine Tool Hydraulics, 2013, 41(7): 94-100. [J]. 南京航空航天大学学报,2013,45(3): 190-195. XIAO Minjin, ZHANG Jiansheng, QIAN Xianyi. The stability control of active magnetic system based on adaptive fuzzy method [J]. Journal of Nanjing University of Aeronautics Astronautics, 2013, 45(3): 190-195. [J]. 轴承,2011(10): 26-30. LU Lihu, LIU Haijuan, ZHU Dehong, et al. Fuzzy anti-interference control of axial active magnetic bearings [J]. Bearing, 2011(10): 26-30. [J]. 北京航空航天大学学报,2010,36(4): 421-425. DING Li, FANG Jiangcheng, WEI Tong, et al. A new method of the axial magnetic bearing robust control for disturbance rejection [J]. Journal of Beijing university of aeronautics and astronautics, 2010, 36(4): 421-425. [M]. 北京:电子工业出版社,2004: 125-205.
点击查看大图
计量
- 文章访问数: 893
- HTML全文浏览量: 86
- PDF下载量: 431
- 被引次数: 0