Aerial Image Registration Based on Bayesian Decision Theory
-
摘要: 为消除像点投影差对航空影像目标监测中影像配准的影响,提出了一种基于贝叶斯决策理论的像点投影差消除方法.该方法通过推导分析像点投影差的分布规律及其对影像配准的影响,设置训练样本区,提取大量特征匹配对,计算得到投影差分布参数,并基于贝叶斯决策理论构建了像点投影差消除准则.为验证其有效性,选用KIT AIS影像数据进行了实验,比较分析了投影差消除前后的配准影像结果.分析结果显示,消除后差分视觉效果得到改善,信息熵减小10%,表明本文方法可有效提高航空影像配准的精度.Abstract: To eliminate the influence of projection difference on aerial image registration in object monitoring, a new image registration method was proposed based on Bayesian decision theory. Distribution rule of projection difference was derived and its impact on image registration was analyzed. A large number of feature matches were extracted to calculate the distribution parameters within the pre-set training sample area. The distribution rule was tested with KIT AIS dataset, and the registered images before and after eliminating projection difference were compared. The difference image results show an improved visual effect and 10% entropy decrease after elimination, which proves that the proposed algorithm is effective to improving the accuracy of aerial image registration.
-
Key words:
- aerial photography /
- image registration /
- Bayesian decision theory /
- entropy
-
刘承平,袁飞. 一种基于飞行平台的数字稳像及目标跟踪系统 [J]. 中国电子科学研究院学报,2012,7(4): 380-384. LIU Chengping, YUAN Fei. Flying platform based digital stabilization and target tracking system [J]. Journal of China Academy of Electronics and Information Technology, 2012, 7(4): 380-384. ZITOVA B, FLUSSER J. Image registration methods: a survey [J]. Image and Vision Computing, 2003, 21(11): 977-1000. KIM J, FESSLER J A. Intensity-based image registration using robust correlation coefficients [J]. IEEE Transactions on Medical Imaging, 2004, 23(11): 1430-1444. MTIR I H, KAANICHE K, CHTOUROU M, et al. Aerial sequence registration for vehicle detection [C]//The 9th International Multi-conference on Systems, Signals and Devices (SSD). Chemnitz: IEEE, 2012: 1-6. OLSON C F, ANSAR A I, Padgett C W. Robust registration of aerial image sequences [C]//The 5th International Symposium on Advances in Visual Computing. Las Vegas: Springer, 2009: 325-334. LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. BAY H, TUYTELAARS T, Van GOOL L. Surf: speeded up robust features [C]//Proceedings of the 9th European Conference on Computer Vision. Graz: Springer, 2006: 404-417. CRIMINISI A, REID I, ZISSERMAN A. A plane measuring device [J]. Image and Vision Computing, 1999, 17(8): 625-634. FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6): 381-395. STONE H S, ORCHARD M T, CHANG E, et al. A fast direct Fourier-based algorithm for subpixel registration of images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2235-2243. WOLBERG G, ZOKAI S. Robust image registration using log-polar transform [C]//Proceedings of 2000 International Conference on Image Processing. Vancouver: IEEE, 2000, 1: 493-496. REDMILL K A, MARTIN J I, OZGUNER U. Aerial image registration incorporating GPS/IMU data [C/OL]//Proceedings of SPIE, Evolutionary and Bio-Inspired Computation: Theory and Applications III [2013-08-10]. http: [C]//spie.org/Publications/Proceedings/Paper/ 10.1117/12.820201. 刘慧,李清泉,曾喆,等. 利用低空视频检测道路车辆 [J]. 武汉大学学报:信息科学版,2011,36(3): 316-320. LIU Hui, LI Qingquan, ZENG Zhe, et al. Vehicle detection in low altitude aircraft video [J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 316-320. 何敬,李永树,李歆,等. 基于点特征和边缘特征的无人机影像配准方法 [J]. 西南交通大学学报,2012,47(6): 955-961. HE Jing, LI Yongshu, LI Xin, et al. Registration method for unmanned aerial vehicle images based on point feature and edge feature [J]. Journal of Southwest Jiaotong University, 2012, 47(6): 955-961. SCHMIDT F. Tracking vehicles in aerial image sequences. (2012-11-15). http: //www.ipf.kit.edu/english/downloads_707.php. OZUYSAL M, CALONDER M, LEPETIT V, et al. Fast keypoint recognition using random ferns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 448-461. 高振宇,杨晓梅,龚剑明,等. 图像复杂度描述方法研究 [J]. 中国图象图形学报,2010,15(1): 129-135. GAO Zhenyu, YANG Xiaomei, GONG Jianming, et al. Research on image complexity description methods [J]. Journal of Image and Graphics, 2010, 15(1): 129-135.
点击查看大图
计量
- 文章访问数: 968
- HTML全文浏览量: 61
- PDF下载量: 670
- 被引次数: 0