Influence of Inertial Effect of Compression Wave on Waveform Evolution
-
摘要: 为了准确地评估隧道出口微压波,基于一维平面波方程和压缩波的特性,推导了压缩波在隧道内传播时压缩波压力梯度的理论公式.采用该理论公式,分析了传播距离,初始压缩波幅值以及初始压缩波波前长度等因素对隧道不同位置处压缩波压力波梯度的影响.结果表明:压缩波压力梯度随着传播距离的增加而増大,其变化幅度越来越大,当传播距离接近临界长度时,其压力梯度几乎发生突变;相同的传播距离下,压缩波压力梯度随初始压缩波幅值的增加而增加,随初始压缩波波前长度的增加而减小;当传播距离小于临界长度时,理论公式和数值计算结果的相对误差小于6%,数值计算结果与文献报道的实测结果吻合良好.Abstract: In order to accurately assess the micro-pressure wave outside tunnel exits, a theoretical formula of pressure gradient of wavefronts was deduced based on the one-dimensional plane wave equation and the flow characteristics of compression wave. The effects of propagation distance, and the amplitude and wavefront length of the initial compression wave on pressure gradient at different positions were analyzed using this theoretical formula. The results indicate that the pressure gradients significantly increase with propagation distance. When the propagation distance is close to the critical length, the pressure gradients show an abrupt change. With the same propagation distance, the pressure gradients increase along with the amplitude of the initial compression wave and decrease with the length of wavefront. When the propagation distance does not exceed the critical length, the relative error between the theoretical formula and numerical calculation is less than 6%, and the numerical results agrees well with measurements reported in literature.
-
Key words:
- inviscid flow /
- inertia effect /
- wavefront /
- pressure gradient /
- propagation distance
-
赵晶,李人宪. 高速列车进入隧道的气动作用数值模拟 [J]. 西南交通大学学报,2009,44(1): 96-100. ZHAO Jing, LI Renxian.Numerical analysis of aerodynamics of high speed trains running into tunnels [J]. Journal of Southwest Jiaotong University, 2009, 44(1): 96-100. 梅元贵,周朝晖,许建林. 高速铁路隧道空气动力学 [M]. 北京:科学出版社,2005: 228-232. VARDY A, BROWN J. An overview of wave propagation in tunnels [C]//Transaero: a European Initiative on Transient Aerodynamics for Railway System Optimisation Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). [S. l.]: Springer, 2002: 249-266. 赵文成,高波,王英学,等. 高速列车突入隧道引起的压缩波的理论研究 [J]. 西南交通大学学报,2004,39(4): 447-450. ZHAO Wencheng, GAO Bo, WANG Yingxue, et al. Theoretical investigation of compression wave induced by high-speed train entering tunnel [J]. Journal of Southwest Jiaotong University, 2004, 39(4): 447-450. 刘洪涛,梅元贵,刘坤. 高速铁路隧道长度对压缩波波前变形的影响研究 [J]. 现代隧道技术,2007,44(3): 6-10. LIU Hongtao, MEI Yuangui, LIU Kun. Effect of high-speed railway tunnel length on distortion of the wavefront of compression wave [J]. Modern Tunnelling Technology, 2007, 44(3): 6-10. MASHIMO S, NAKATSU E, AOKI T, et al. Attenuation and distortion of compression waves propagating in a high-speed railway tunnel [J]. Japan Society of Mechanical Engineers, 1997, 40(1): 51-57. NAKAMURA S, SASA D, AOKI T. Attenuation and distortion of compression waves propagating in very long tube [J]. Journal of Thermal Science, 2011, 20(1): 53-57. MASATSUKA K. I do like CFD. [M/OL]. http: //www.cfdbooks.com. 李伟新. 一维不定常流与冲击波 [M]. 北京:国防工业出版社,2003: 81-85. PAHLKE K. Application of the standard aeronautical CFD method FLOWer to ETR500 tunnel entry [C]//Transaero: a European Initiative on Transient Aerodynamics for Railway System Optimisation Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). [S. l.]: Springer, 2002: 217-224. VAN LEER B. Towards the ultimate conservative difference scheme V.: a second order sequel to Godunov's method [J]. Journal of Computational Physics, 1979, 32(1): 101-136. ADAMI S, KALTENBACH H J. Sensitivity of the waves-steepening in railway tunnels with respect to the friction model [C]// Proceedings of the 6th International Colloquium on Bluff Bodies Aerodynamics Applications. Milano: BBAA VI, 2008: 1-16. 李人宪,关永久,赵晶,等. 高速铁路隧道缓冲结构的气动作用分析 [J]. 西南交通大学学报,2012,47(2): 175-180. LI Renxian, GUAN Yongjiu, ZHAO Jing, et al. Aerodynamic analysis on entrance hood of high-speed railway tunnels [J]. Journal of Southwest Jiaotong University, 2012, 47(2): 175-180.
点击查看大图
计量
- 文章访问数: 888
- HTML全文浏览量: 75
- PDF下载量: 493
- 被引次数: 0