Optimization and Design of Maglev System PID Controller Based on Particle Swarm Optimization Algorithm
-
摘要: 为了改善磁浮系统的非线性和不稳定性特点,利用微分几何方法将两个不同结构的非线性子系统转化为两个相同结构的线性子系统,设计了基于标准粒子群算法的比例积分微分控制器.从固定惯性权重、线性递减惯性权重和线性微分递减惯性权重中,选出适合电磁铁1和电磁铁2的固定惯性权重,得到电磁铁1控制器的固定惯性权重参数C为0.5,电磁铁2控制器的固定惯性权重参数C为0.49,并且通过建立模糊综合评价模型得出优化后的电磁铁1和电磁铁2的控制器抗干扰的能力是好,且好的隶属度皆为0.561 9.实验结果表明,优化后的磁浮系统具有较好的鲁棒性.Abstract: In order to improve the nonlinear and unstable characteristics of maglev systems, two nonlinear subsystems with different structures were transformed into linear ones with the same structure by differential geometry method, and then a PID controller that is based on the standard particle swarm optimization (PSO) was built. For the PSO algorithm, the fixed inertia weight (FIW), linear descend inertia weight (LIW), and linear differential descend inertia weight (LDW) were comparatively studied through simulation; among them the FIW was found more suitable and hence selected for electromagnet 1 and electromagnet 2. After optimization of controller parameters, the value of the FIW parameter C for electromagnets 1 and 2 was set to 0.5 and 0.49, respectively. In addition, a fuzzy comprehensive evaluation model was built to evaluate the anti-interference performance of the electromagnets 1 and 2, revealing that the two electromagnets both have a good anti-interference ability, and the membership degree of good is 0.561 9. Experimental results show that the optimized maglev system has a fairly good robustness.
-
吴祥明. 磁浮列车 [M]. 上海:上海科学技术出版社,2003: 1-18. 王莉,张昆仑. 基于零功率控制策略的混合磁悬浮系统 [J]. 西南交通大学学报,2005,40(5): 667-672. WANG Li, ZHANG Kunlun. Hybrid magnetic suspension system based on zero power control strategy [J]. Journal of Southwest Jiaotong University, 2005, 40(5): 667-672. 张湘,连级三,张昆仑. 磁浮列车机械制动系统的自适应控制研究 [J]. 铁道学报,2002,24(3): 18-22. ZHANG Xiang, LIAN Jisan, ZHANG Kunlun. Study on adaptive control of mechanical brake system for maglev train [J]. Journal of the China Railway Society, 2002, 24(3): 18-22. 王伟,张晶涛,柴天佑. PID参数先进整定方法综述 [J]. 自动化学报,2000,26(3): 347-355. WANG Wei, ZHANG Jingtao, CHAI Tianyou. A survey of advanced PID parameter tuning methods [J]. Acta Automatica Sinica, 2000, 26(3): 347-355. GHAZALI R, SAM Y M, RAHMAT M F, et al. Simulation and experimental studies on perfect tracking optimal control of an electrohydraulic actuator system [J]. Journal of Control Science and Engineering, 2012: 1-8. MESHRAM P M, KANOJIYA R G. Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor [C]//2012 International Conference: Advances in Engineering, Science and Management. Nagapattinam: [s. n.], 2012: 117-122. HUANG Fangping, PENG Tianhao. A variable speed control hydraulic power system based on fuzzy immune PID control [C]//2011 International Conference: Fluid Power and Mechatronics. Beijing: [s. n.], 2011: 415-418. LIU Fan, JOO E M. Design for auto-tuning PID controller based on genetic algorithms [C]//4th IEEE Conference: Industrial Electronics and Applications. Xi'an:, 2009: 1924-1928. 徐绍辉,徐正国,金能强,等. 电磁永磁混合悬浮系统的神经元PID控制 [J]. 电力电子技术,2006,40(4): 12-14. XU Shaohui, XU Zhengguo, JIN Nengqiang, et al. Neuron-PID based levitation control for the hybrid maglev system [J]. Power Electronics, 2006, 40(4): 12-14. 刘东,冯全源,蒋启龙. 基于改进PSO算法的磁浮列车PID控制器参数优化 [J]. 西南交通大学学报,2010,45(3): 405-410. LIU Dong, FENG Quanyuan, JIANG Qilong. Parameter optimization of maglev PID controller based on improved PSO algorithm [J]. Journal of Southwest Jiaotong University, 2010, 45(3): 405-410. 戚建成. 磁悬浮控制系统的分析与设计 [D]. 哈尔滨:哈尔滨工业大学,2012. 方勇纯,卢桂章. 非线性系统理论 [M]. 北京:清华大学出版社,2009: 47-55. 石振东,刘国庆. 实验数据处理与曲线拟合技术 [M]. 哈尔滨:哈尔滨船舶工程学院出版社,1991: 184-203. 李丽,牛奔. 粒子群优化算法 [M]. 北京:冶金工业出版社,2009: 25-32. 谢季坚,刘承平. 模糊数学方法及其应用 [M]. 武汉:华中科技大学出版社,2013: 29-30.
点击查看大图
计量
- 文章访问数: 1068
- HTML全文浏览量: 105
- PDF下载量: 499
- 被引次数: 0