考虑瞬态温度场的水平井水力冲砂临界排量
doi: 10.3969/j.issn.0258-2724.2014.06.028
Critical Discharge Flow of Sand Cleaning Fluid Considering Transient Temperature Effect of Horizontal Well
-
摘要: 针对目前油气田水平井水力冲砂施工难度大、难以辨识合理的冲砂排量的问题.基于水平井地层-井筒瞬时温度场模型,提出水平井环空临界流速计算模型,考虑瞬时温度场对冲砂液黏度的影响.通过有限体积法求解瞬时温度场,结合冲砂液温度-黏度方程,求取了水平井全井段全过程环空临界流速,在此基础上建立了临界排量计算新方法.通过对4种常用冲砂液进行实例分析表明:与不考虑温度情况相比,考虑温度时全过程最大环空临界流速分别增大了9.20%、17.26%、9.85%和7.64%,临界排量分别增大了8.33%、18.18%、10.00%和11.11%,说明了水平井水力冲砂排量计算考虑温度影响的必要性.Abstract: Hydraulic sand cleaning operation of horizontal well in oil and gas fields is difficult because it is hard to obtain a reasonable discharge volumetric flow of the sand cleaning fluid (SCF) in practice. To solve this problem, an annular critical velocity model that is based on the transient thermal model of formation and wellbore during sand cleaning operation was proposed to recognize the SCF critical velocity in horizontal well. Taking into account the influence of transient temperature field on the SCF viscosity, the finite volume method (FVM) was used to obtain the transient thermal distribution, and the transient annulus critical velocity of the whole wellbore was calculated by solving the temperature-viscosity equation of the SCF. On this basis, a new method for calculating the critical discharge flow of SCF was then developed. As a case study, the critical velocities of four typical SCFs were calculated using the proposed method. The results show that the critical velocities of the four SCFs when considering the effect of temperature are 9.20%, 17.26%, 9.85%, and 7.64% respectively lager than that without considering the thermal effect; and the critical discharge flow are 8.33%, 18.18%, 10.00%, and 11.11% larger respectively. Therefore, temperature should be considered to optimize the critical velocity and discharge flow of SCFs in horizontal well.
-
管志川,李千登,宁立伟,等. 钻井液热物性参数测量及其对井筒温度场的影响[J]. 钻井液与完井液,2011,28(3): 1-4. GUAN Zhichuan, LI Qiandeng, NING Liwei, et al. Study on drilling fluid thermal properties measurement and influence on wellbore temperature field[J]. Drilling Fluid and Completion Fluid, 2011, 28(3): 1-4. 刘希胜. 钻井工艺原理:中钻进技术[M]. 北京:石油工业出版社,1988: 31. 宋洵成,管志川. 深水钻井井筒全瞬态传热特征[J]. 石油学报,2011,32(4): 704-708. SONG Xuncheng, GUAN Zhichuan. Full transient analysis of heat transfer during drilling fluid circulation in deep-water wells[J]. Acta Petrolei Sinica, 2011, 32(4): 704-708. RAMEY H J. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427-435. RAYMOND L R. Temperature distribution in a circulating drilling fluid[J]. Journal of Petroleum Technology, 1969, 21(3): 333-341. 李洪乾,杲传良,任耀秀,等. 水平井钻井第二洗井区环空止动返速的计算[J]. 石钻探技术,1995(增刊): 27-29,85. LI Hongqian, GAO Chuanliang, REN Yaoxiu, et al. Calculation of annular slip velocity in the 2nd cleaning during horizontal drilling[J]. Petroleum Drilling Techniques, 1995(Sup.): 27-29,85. 沈燕来,陈建武. 冲砂洗井水力计算方法综述[J]. 水动力研究与进展,1998,13(3): 347-353. SHEN Yanlai, CHEN Jianwu. Brief review on hydraulic calculation methods of sand flushing[J]. Journal of Hydrodynamics, 1998, 13(3): 347-353. 李洪乾,刘希圣. 水平井岩屑床止动模型的建立[J]. 石油大学学报:自然科学版,1994,18(2): 33-38. LI Hongqian, LIU Xisheng. Establishment of unslided cuttings bed model in horizontal well drilling[J]. Journal of the University of Petroleum: Natural Science, 1994, 18(2): 33-38. 汪志明,张政. 大位移水平井两层不稳定岩屑传输模型研究[J]. 水动力研究与进展,2004,19(5): 676-681. WANG Zhiming, ZHANG Zheng. A two-layer time-dependent model for cuttings transport in extended-reach horizontal wells[J]. Journal of Hydrodynamics, 2004, 19(5): 676-681. 曲洪娜,黄中伟,李根生,等. 水平井旋转射流冲砂洗井水力参数设计方法[J]. 石油钻探技术,2011,39(6): 39-43. QU Hongna, HUANG Zhongwei, LI Gensheng, et al. Hydraulic parameters of sand-flushing with rotating jets in horizontal wells[J]. Petroleum Drilling Techniques, 2011, 39(6): 39-43. 董长银,邓珊,李爱萍,等. 大斜度井筒条件下沉积砂床表面颗粒起动临界条件研究[J]. 石油钻探技术,2010,38(3): 22-28. DONG Changyin, DENG Shan, LI Aiping, et al. Research of critical condition for grains at bed surface in highly deviated wells[J]. Petroleum Drilling Techniques, 38(3): 22-28. 杨谋,孟英峰,李皋,等. 钻井全过程井筒-地层瞬态传热模型[J]. 石油学报,2013,34(2): 366-371. YANG Mou, MENG Yingfeng, LI Gao, et al. A Transient heat transfer model of wellbore and formation during the whole drilling process[J]. Acta Petrolei Sinica, 2013, 34(2): 366-371. 汪海阁,刘希圣,丁岗,等. 水平井段岩屑床厚度模式的建立[J]. 石油大学学报,自然科学版,1993,17(3): 25-32. WANG Haige, LIU Xisheng, DING Gang, et al. The model of cuttings bed thickness in horizontal well section[J]. Journal of the University of Petroleum, China, 1993, 17(3): 25-32. 周风山,蒲春生. 水平井偏心环空中岩屑床厚度预测研究[J]. 石油钻探技术,1998,26(4): 17-19,60. ZHOU Fengshan, PU Chunsheng. Study on predication of cuttings bed thickness in eccentric annular in horizontal well[J]. Petroleum Drilling Techniques, 1998, 26(4): 17-19,60. 张兆顺. 流体力学[M]. 北京:清华大学出版社,2006: 338-340. CLARK R K, BICKNAM K L. A mechanistic model for cuttings transport [C]//SPE Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers, 1994: 139-153. CHARLES S, SAMMUEL H, SWIFT C. Calculations of circulating mud temperatures[J]. Journal of Petroleum Technology, 1970, 22(6): 670-674. KELLER H H, COUCH E J, BERRY P M. Temperature distribution in circulating mud columns[J]. SPE Journal, 1973, 13(1): 23-30. POPIEL C O, WOJTKOWIAK J. Simple formulas for thermophysical properties of liquid water for heat transfer calculation (from 0 ℃ to 150 ℃)[J]. Heat Transfer Engineering, 1998: 19(3), 87-101. SANTOYA E, SANTOYA-GUTIERREZ S, GARCIA A, et al. Rheological property measurement of drilling fluids used in geothermal wells[J]. Applied Thermal Engineering, 2001, 21: 283-302.
点击查看大图
计量
- 文章访问数: 1008
- HTML全文浏览量: 80
- PDF下载量: 515
- 被引次数: 0