基于一面两孔特征的点云配准方法
doi: 10.3969/j.issn.0258-2724.2014.06.023
Registration Method for Point Cloud Based on Feature of One Plane and Two Cylindrical Holes
-
摘要: 为了提高零件在扫描检测过程中点云与设计模型的配准精度,提出了一种基于一面两孔特征的点云配准方法.该方法粗配准以零件的平面/圆柱孔特征为对象,使设计模型和点云的局部坐标系重合,并通过改进ICP算法求解点云与设计模型最近点的距离最小平方和实现精配准.由于配准区域和最近点的计算方法不同,精配准进一步分为全域和特征域配准两种类型.全域精配准以距点云最近的设计模型三角网格点或投影点为最近点,适合于毛坯件;特征域精配准则通过求解点云在平面/圆柱孔特征上的投影点为最近点,适合于成品件.试验及计算结果表明:全域配准的配准精度随表面离散点距离的减小而提高, 当离散点距离达到1.50 mm时,其配准精度已经达到0.15 mm,基本满足工程应用要求.当配准精度相同时,配准效率较其它方法提高10%~20%.Abstract: For improving the registration accuracy between point cloud and design model of the parts during scan detection, a registration method based on the feature of one plane and two cylindrical holes was proposed. The rough registration applies the features of plane and holes to coincide with the local coordinate systems of point cloud and design model. The fine registration is finished by using the improved iterative closest point (ICP) algorithm to calculate the sum of least squares of the distance between the closest points and point cloud. Since the calculation methods of registration areas and the closest points are different, fine registration is further classed into the global domain and feature domain types. The closest points of global registration are obtained by comparing the distance between point cloud and the nearest design model grid points or projection points, which is suitable for blank parts. The projection points of point cloud on a plane or a cylindrical hole are the closest points of feature domain registration, which is suitable for finished parts. The test results show that the accuracy of global registration will increase with the distance between surface discrete points decreasing. When the distance reaches 1.50 mm, the accuracy is about 0.15 mm, which meets the engineering requirements. For the same registration accuracy, the efficiency will be improved by 10%-20% compared with that of other methods.
-
Key words:
- one plane and two cylindrical holes /
- feature /
- registration /
- closest point /
- ICP algorithm
-
LI Z X, GOU J B, CHU Y X. Geometric algorithms for workpiece localization[J]. IEEE Trans. Robot Automat., 1998, 14(6): 864-878. FISCHER A, MANOR A, BARHAK Y. Adaptive parameterization for reconstruction of 3D freeform objects from lasers-canned data[C]//Proceedings Seventh Pacific Conference. Washington D C: IEEE Computer Society, 1999: 188-197. YAHIA H M, HUOT E G, HERLIN I L, et al. Geodesic distance evolution of surfaces: a new method for matching surfaces[J]. Computer Vision and Pattern Recognition, 2000, 1(1): 663-668. ESAT I I, BAHAI H. Surface alignment based on the moment of inertia and improved least-squares methods[J]. Journal of Engineering Manufacture, 2000, 214(7): 547-554. 刘元朋,刘晶,张力宁,等. 复杂曲面测量数据最佳匹配问题研究[J]. 中国机械工程,2005,16(12): 1080-1082. LIU Yuanpeng, LIU Jing, ZHANG Lining, et al. Research on point cloud to the complex surface best-fitting[J]. Chinese Journal of Mechanical Engineering, 2005, 16(12): 1080-1082. 周丽敏,卜昆,董一巍,等. 基于简化点云带动的涡轮叶片快速配准技术[J]. 计算机集成制造系统,2012,18(5): 988-992. ZHOU Limin, BU Kun, DONG Yiwei, et al. Rapid registration technology of turbine blade based on simplified cloud data[J]. Computer Integrated Manufacturing Systems, 2012, 18(5): 988-992. 刘晶. 叶片数字化检测中的模型配准技术及应用研究[D]. 西安:西北工业大学,2006. 黄胜利,卜昆,程云勇,等. 涡轮叶片密集点云数据与CAD模型配准方法[J]. 中国机械工程,2011,22(14): 1699-1703. HUANG Shengli, PU Kun, CHENG Yunyong, et al. Registration for turbine blade between dense cloud data and CAD model[J]. Chinese Journal of Mechanical Engineering, 2011, 22(14): 1699-1703. BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. RISTIC M, BRUJIC D. Efficient registration of NURBS geometry[J]. Image and Vision Computing, 1997, 15(12): 925-935. 曾艳,李斌,彭芳瑜,等. 面向数控加工的大型螺旋桨桨叶的余量估算问题研究[J]. 中国机械工程,2006,17(6): 566-569. ZENG Yan, LI Bin, PENG Fangyu, et al. Research on the estimation of the propeller allowance in NC machining[J]. Chinese Journal of Mechanical Engineering, 2006, 17(6): 566-569. 何敬,李永树,李歆,等. 基于点特征和边缘特征的无人机影像配准方法[J]. 西南交通大学学报,2012,47(6): 955-961. HE Jing, LI Yongshu, LI Xin, et al. Registration method for unmanned aerial vehicle images based on point feature and edge feature[J]. Journal of Southwest Jiaotong University, 2012, 47(6): 955-961. 谭昌柏. 结构件反求建模中的数据处理技术[D]. 南京:南京航空航天大学机电学院,2003. KO K H, TAKASHI M, NICHOLAS M P, et al. Shape intrinsic properties for free-form object matching[J]. Journal of Computing and Information Science in Engineering, 2003, 3(4): 325-333. 德贝尔赫. 计算几何-算法与应用[M]. 邓俊辉,译. 2版. 北京:清华大学出版社,2005: 206-233. 蒋成成,胡同森,周维. 一种改进的迭代最近点算法[J]. 计算机系统应用,2009,18(8): 84-87. JIANG Chengcheng, HU Tongsen, ZHOU Wei. An improved iterative closest points algorithm[J]. Computer Systems and Applications, 2009, 18(8): 84-87. 孙家广. 计算机图形学[M]. 北京:清华大学出版社,1998: 413-415.
点击查看大图
计量
- 文章访问数: 882
- HTML全文浏览量: 63
- PDF下载量: 500
- 被引次数: 0