Electric-Hydraulic System for Continuously Variable Transmission: Test Analysis and Fault Detection
-
摘要: 为验证无级变速器电液控制模块性能是否达到国家统一标准,以液压控制原理与MATLAB仿真技术相结合对电液控制模块的压力水平、调压曲线、重复精度以及阶跃响应的快速性进行分析,并构建台架及整车试验后开发了一套液压控制模块专用试验系统。同时采用油液光谱分析与免疫算法相结合的方式,通过计算零件油液中金属元素浓度含量指标,对无级变速器零部件早期故障进行定位.试验结果表明电液模块速比、压力跟踪的准确性和快速性及热平衡流量均能满足国标要求,故障零件定位精度可达95.3%.Abstract: To determine if the performance of the electro hydraulic control module for continuously variable transmission could match the national standards of China, the stress level, pressure regulating curve, repeat accuracy, and speed of step response of the electro-hydraulic control module were analyzed by the hydraulic pressure control principle and Matlab simulation method. An exclusive test system for the hydraulic control module was developed after establishment of a test bench and integral vehicle tests. In the meantime, early faults of the CVT parts were positioned by calculation of the metallic element concentration in the hydraulic oil, using the oil spectrum analysis and immune algorithm. Test results show that the speed ratio of the electro-hydraulic module, the accuracy and speed of pressure tracking, and the thermal equilibrium flow all meet the national standards and the positioning accuracy of the fault parts is above 95.3%.
-
杨凯. 金属带式CVT夹紧力控制基液压控制系统的仿真分析[D]. 长沙:湖南大学,2012. 高帅. 无级变速器电液控制系统开发及关键技术研究[D]. 长春:吉林大学,2012. TOGAI K, TAMAKI H. Human driving behavior analysis and model representation with expertise acquiring process for controller rapid prototyping[C/OL]//SAE Technical Paper. 2011, 2011-01-0051, doi: 10.4271/2011-01-0051. 周萍,聂晋,孙跃东. 基于模糊PID控制的CVT速比仿真研究[J]. 机械传动, 2011,35(8): 25-8. ZHOU Ping, NIE Jin, SUN Yuedong. Simulation study of CVT speed ratio based on fuzzy-PID control theory[J]. Journal of Mechanical Transmission, 2011, 35(8): 25-8. SAITO T, MIYAMOTO K. Prediction of CVT trans-mission efficiency by metal V-belt and pulley behavior with feedback control[C/OL]//SAE Technical Paper 2010-01-0855, doi: 10.4271/2010-01-0855. ABUASAKER S, SOMIOTTI A. Drivability analysis of heavy goods vehicles[J]. SAE Int. J. Commer. Veh., 2010, 3(1): 195-215. 刘佳. 油缸再制造技术分析及应用研究[D]. 济南: 山东大学,2012. 田勇,廉书林,陈闽杰. 油液污染分析在机械磨损检测中的研究进展[J]. 液压气动与密封,2013, 7(1): 1-4. TIAN Yong, LIAN Shulin, CHEN Minjie, Oil pollution analysis research progress in th detection of mechanical wear[J]. Hydraulics Pneumatics and Seal, 2013, 7(1): 1-4. 毛国强,李艳军. 基于数字图像与XRF技术的发动机油液综合分析系统[J]. 机械工程与自动化,2009, 4(1): 128-130. MAO Guoqiang, LI Yanjun. Based on the technology of digital image and XRF comprehensive analysis of the engine oil system[J]. Mechanical Engineering and Automation, 2009, 4(1): 128-130. 王曦,刘志刚,林卫国. 基于智能化多目标优化的空压机油液故障诊断研究[J]. 中国农机化学报,2014,35(2): 306-309,322. WANG Xi, LIU Zhigang, LIN Weiguo. Study on oil synthetic fault diagnosis of air compressor based on intelligent multi-objective optimization[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 306-309, 322. PRASSAD M, SARDAR A, MUBASHIR S. Transmission technologies: an Indian perspective[C/OL]//SAE Technical Paper 2011-26-0083, doi: 10.4271/2011-26-0083. MANYALA J. Gearshift actuator dynamics predictions in a dual clutch transmission[J]. SAE Int. J. Commer. Veh., 2013, 6(2): 589-597. MINJE P, DAEBONG J, MINJAE K, et al. Study on the improvement in continuously variable transmission efficiency with a thermal management system[J]. Applied Thermal Engineering, 2013, 61 (2): 11-19. SHRESTHA K, KOTA I, TAKAHIRO N, et al. Next-generation fluid technology for CVT and AT[C/OL]//SAE Technical Paper 2011-01-2122, doi: 10.4271/2011-01-2122. KAMIJO S, TOMOMATSU H, SAWADA M, et al. Development of iQ with CVT for USA[J]. SAE Int. J. Engines, 2011, 4(1): 2142-2147.
点击查看大图
计量
- 文章访问数: 761
- HTML全文浏览量: 68
- PDF下载量: 448
- 被引次数: 0