辅助索接地的简化索网-阻尼器系统的阻尼和频率
doi: 10.3969/j.issn.0258-2724.2014.06.003
Damping and Frequency of Simplified Cable-Network-Damper System with Cross-Tie Fixed to Ground
-
摘要: 索网-阻尼器-接地辅助索系统的振动特性研究对于拉索减振问题具有重要的工程应用价值.本文建立了由2根水平拉索和1根锚固于桥面的辅助索组成的简化索网系统,将辅助索简化为线性弹簧单元,基于弦理论,由拉索锚固端的位移边界条件和阻尼器、辅助索安装位置处位移及力的连续条件,推导得索网系统的复特征值方程,并由此求得阻尼和频率的数值解.以3、4阶振动模态为例,讨论了弹簧刚度、安装位置对最大模态阻尼比、阻尼器的最优阻尼系数和相应振动频率的影响.研究结果表明,索网系统的各阶模态存在奇数阶和偶数阶两种模态,两种振动模态具有不同的振动特性.随着辅助索与桥面连接段刚度的增加,最大模态阻尼比可能的取值上限将增加至单索-阻尼器系统的最大模态阻尼比值的2.0~2.4倍,但辅助索可选择的优化安装区间则变得更为狭窄和分散.Abstract: The dynamics of cable network with both cross-ties and dampers are important for cable vibration mitigation. A simplified cable-network-damper system was proposed. It is comprised of two parallel cables and a cross-tie fixed on ground. The cross-tie was simplified as linear spring elements. Based on the string theory, the complex frequency equation of the system was deduced according to the boundary conditons at the fixed end of the cables and displacement continuity and force equilibrium equations at the mounting position of the cross-tie. Then the damping and frequency values were derived by numerical iteration. In the cases of the third and fourth vibration modes, effects of spring stiffness and location on the maximum damping ratio, the optimal damping coefficient and the corresponding frequency were analyzed. It is found that there are odd and even modes in the system vibration; and these two modes have different vibration characteristics. With the increasing in the stiffness of the cross-tie fixed on ground, the upper limit of maximum damping value is increased 2.0-2.4 times of the maximum modal damping ratio of a single cable-damper system; however, the optimal cross-tie locations become less and separated.
-
Key words:
- cable network /
- cross-tie /
- damper /
- damping ratio /
- frequency
-
李永乐,徐幼麟,沈其民,等. 斜拉桥拉索风-雨致振动(Ⅰ):机理分析[J]. 西南交通大学学报,2011,46(4): 529-552. LI Yongle, XU Youlin, SHEN Qiming, et al. Rain-wind-induced vibration of cables in cable-stayed bridges (Ⅰ): mechanism analysis[J]. Journal of Southwest Jiaotong University, 2011, 46(4): 529-552. KRENK S. Vibrations of a taut cable with an external damper[J]. Journal of Applied Mechanics, 2000, 67(4): 772-776. MAIN J A, JONES N P. Free vibrations of a taut cable with attached damper. I: linear viscous damper[J]. Journal of Engineering Mechanics, 2005, 128(10): 1062-1071. 李寿英,顾明,陈政清. 阻尼器对拉索风雨激振的控制效果研究[J]. 工程力学,2007,24(8): 1-8. LI Shouying, GU Ming, CHEN Zhengqing. The effectiveness of dampers to rain-wind induced vibration of stay cables[J]. Engineering Mechanics, 2007, 24(8): 1-8. 刘健新,李哲. 气动措施对斜拉索风荷载及结构响应的影响[J]. 建筑科学与工程学报,2010,27(3): 89-93. LIU Jianxin, LI Zhe. Influence of aerodynamic measure on wind load and structural response of stayed-cable[J]. Journal of Architecture and Civil Engineering, 2010, 27(3): 89-93. 周亚刚. 斜拉索-辅助索系统动力特性和减振研究[D]. 上海:同济大学,2007. BOSCH H R, PARK S W. Effectiveness of external dampers and crossties in mitigation of stay cable vibrations[C]//Proceedings of 6th International Symposium on Cable Dynamics. Charleston: AIM, 2005: 115-122. YAMAGUCHI H, NAGAHAWATTA H D. Damping effects of cable cross ties in cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 35-43. SUN Limin, ZHOU Yagang, HUANG Hongwei. Experiment and damping evaluation on stay cables connected by cross ties[C]//Proceedings of 7th International Symposium on Cable Dynamics. Vienna: AIM, 2007: 175-182. CARACOGLIA L, JONES N P. In-plane dynamic behavior of cable networks: part 1: formulation and basic solutions[J]. Journal of Sound and Vibration, 2005, 279(3/4/5): 969-991. CARACOGLIA L, JONES N P. Passive hybrid technique for the vibration mitigation of systems of interconnected stays[J]. Journal of Sound and Vibration, 2007, 307: 849-864. CARACOGLIA L, ZUO Delong. Effective of cable networks of various configurations in suppressing stay-cable vibration[J]. Engineering Structures, 2009(31): 2851-2864. 周海俊,丁炜,孙利民. 拉索-弹簧-阻尼器系统的阻尼特性分析[J]. 工程力学,2014,31(1): 79-84. ZHOU Haijun, DING Wei, SUN Limin. Damping of taut cable with a damper and spring[J]. Engineering Mechanics, 2014, 31(1): 79-84. ZHOU Haijun, YANG Xia. Free vibration of a simple cable-network-damper system[C]//Proceedings of 12th International Symposium on Structural Enginee-ring. Wuhan: Science Press, 2012: 1480-1485. IRVINE H M. Cable structures[M]. Cambridge: MIT Press, 1981: 90-101.
点击查看大图
计量
- 文章访问数: 996
- HTML全文浏览量: 65
- PDF下载量: 409
- 被引次数: 0