Novel PV/Li-Ion Energy Storage System Based on Non-balancing Cell Management
-
摘要: 提出了一种新型光伏锂电储能系统拓扑结构.在该结构中,光伏电池与锂离子电池单体之间通过控制单元实现能量耦合,通过光伏电池与锂离子电池单体之间的结构耦合,实现锂离子电池的无均衡管理(NBCM).对该拓扑结构进行了仿真和实验验证,实验结果表明,该光伏锂电储能模组能够在以欠压浮充为投切判据的控制单元工作模式下,实现光伏电池近似MPPT工作的同时,能有效地对锂离子电池进行充放电;与肖特基二极管近似直连相比,通过MOSFET以近似直连的方式耦合选定工作电压的30 W光伏电池与锂离子电池能够提升模组能量效率约8%,在独立运行和并网运行光伏储能发电系统中均可应用.Abstract: A novel topology of an energy storage system composed of PV panels and lithium-ion batteries was presented. For the individual module of the proposed system, the energy coupling between the photovoltaic panel and lithium-ion cell is achieved with the designed control unit. Besides, with the structural coupling of the photovoltaic panel and lithium-ion cell of the PV/Li-ion module, the non-balancing cell management (NBCM) for the lithium-ion cell is realized. The proposed system was verified by simulation and experiments. It is shown that, in the proposed PV/Li-ion module, with the low-voltage floating charging criteria, the approximate MPPT (maximum power point tracking) control was accomplished with the charge-discharge of the lithium-ion cell. In comparison with the schottky diode connection, the operation efficiency of the PV/Li-ion module is increased by about 8% when there is a nearly direct connection between the lithium-ion cell and the 30 W PV panel with nearly no intervening electronics (just MOSFETs, metallic oxide semiconductor field effect transistor). The novel topology of the NBCM PV/Li-ion system can be applied both in stand-alone photovoltaic-battery systems and in grid-connected photovoltaic power plants.
-
Key words:
- solar cell /
- lithium-ion cell /
- non-balancing cell management /
- energy storage system
-
RYDH C J, SANDN B A. Energy analysis of batteries in photovoltaic systems. part Ⅰ: performance and energy requirements[J]. Energy Conversion and Management, 2005, 46(11): 1957-1979. RYDH C J, SANDN B A. Energy analysis of batteries in photovoltaic systems. part Ⅱ: energy return factors and overall battery efficiencies[J]. Energy Conversion and Management, 2005, 46(11): 1980-2000. GIBSON T L, KELLY N A. Solar photovoltaic charging of lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(12): 3928-3932. REYNAUD J F, GANTET O, ALOSI P, et al. A novel distributed photovoltaic power architecture using advanced Li-ion batteries[C]//Proceedings of EPE-PEMC, 2010-14th International Power Electronics and Motion Control Conference.[s.l]: IEEE, 2010: . TANT J, GETH F, SIX D, et al. Multi-objective battery storage to improve PV integration in residential distribution grids[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 1-10. GENIES S, ROUAULT H. Photovoltaic system with integrated photovoltaic panel and battery: United States, US20110165441 A1[P]. 2011-07-07. WILLIAMS J D, HARVEY T W. Neural network controlled power distribution element: United States, US6369545 B1[P]. 2002-03-09. WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. LEE Y S, CHENG M W. Intelligent control battery equalization for series connected lithium-ion battery strings[J]. IEEE Trans. on Industrial Electronics, 2005, 52: 1297-1307. MOORE S W, SCHNEIDER P J. A review of cell equalization methods for lithium ion and lithium polymer battery systems[C]// Proceedings of the SAE 2001 World Congress. Detroit: Society of Automotive Engineers, 2001: 2001-01-0959. PARK H S, KIM C E, KIM C H, et al. A modularized charge equalizer for an HEV lithium-ion battery string[J]. IEEE Transactions on Industrial Electronics, 2009, 56: 1464-1476. 徐顺刚. 分布式供电系统中储能电池均衡管理及逆变控制技术研究[D]. 成都:西南交通大学,2011. ASHLEY C R, BECKER-IRVIN C H. Modular control electronics for batteries: United States, US6043629 A[P]. 2000-03-28. LIU Zhixiang, WANG Cheng, MAO Zongqiang. Solar power storage module, and solar power storage system and solar power supply system having same: United States, US20120169269 A1[P]. 2012-07-05. MULDER G, RIDDER F D, SIX D. Electricity storage for grid-connected household dwellingswith PV panels[J]. Solar Energy, 2010, 84: 1284-1293. PEROVICH S M, SIMIC S K, TOSIC D V, et al. On the analytical solution of some families of transcendental equations[J]. Applied Mathematics Letters, 2007, 20(5): 493-498. GAO Lijun, LIU Shengyi, DOUGAL R A. Dynamic Lithium-ion battery model for system simulation[J]. IEEE Transactions on Components and Packaging Technologies, 2012, 25: 495-505. 王占国,金新民,孙丙香,等. 基于电路暂态分析的功率型动力电池建模[J]. 北京交通大学学报,2012,36(2): 91-94. WANG Zhanguo, JIN Xinmin, SUN Bingxiang, et al. Modeling research of power-assist battery based on circuit transient analysis[J]. Journal of Beijing Jiaotong University, 2012, 36(2): 91-94. BULLER S, THELE M, DONCKER R W D, et al. Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications[J]. IEEE Transactions on Industry Applications, 2005, 41: 742 -747. 何磊. 电动汽车锂离子电池建模及SOC估计方法研究[D]. 哈尔滨:哈尔滨工业大学,2012. BENINI L, CASTELLI G, MACCI A, et al. Discrete-time battery models for system-level low-power design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2001, 9: 630-640. CHEN M, RINCON-MORA G A. Accurate electrical battery Model capable of predicting runtime and Ⅰ-Ⅴ performance[J]. IEEE Transactions on Energy Conversion, 2006, 21: 504-511. 蒋新华. 锂离子电池组管理系统研究[D]. 上海:中国科学院上海微系统与信息技术研究所,2007.
点击查看大图
计量
- 文章访问数: 814
- HTML全文浏览量: 57
- PDF下载量: 569
- 被引次数: 0