• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于各向异性测度的路面三维图像裂缝识别

彭博 WANGKelvinC.P. 陈成 蒋阳升

彭博, WANGKelvinC.P., 陈成, 蒋阳升. 基于各向异性测度的路面三维图像裂缝识别[J]. 西南交通大学学报, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
引用本文: 彭博, WANGKelvinC.P., 陈成, 蒋阳升. 基于各向异性测度的路面三维图像裂缝识别[J]. 西南交通大学学报, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
PENG Bo, WANG Kelvin C.P., CHEN Cheng, JIANG Yangsheng. 3D Pavement Crack Image Detection Based on Anisotropy Measure[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
Citation: PENG Bo, WANG Kelvin C.P., CHEN Cheng, JIANG Yangsheng. 3D Pavement Crack Image Detection Based on Anisotropy Measure[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023

基于各向异性测度的路面三维图像裂缝识别

doi: 10.3969/j.issn.0258-2724.2014.05.023
基金项目: 

国家自然科学基金资助项目(51108391,61170041)

中央高校基本科研业务费专项资金科技创新项目(A0920502051208-99)

3D Pavement Crack Image Detection Based on Anisotropy Measure

  • 摘要: 为准确而完整地识别路面裂缝,提出了基于1 mm/像素的路面三维图像裂缝自动识别算法.该算法主要包括各向异性测度计算与自适应优化阈值分割、深度验证和多分辨率去噪处理3个部分.首先,针对路面图像像素特征,基于0°、45°、90°和135°四个方向的线性邻域的均值和标准差计算每个像素的各向异性测度(表征方向性的强弱),并应用最大类间方差法确定最优阈值,将路面图像分为强方向性和弱方向性像素两类;其次,根据半径为d的正方形邻域深度均值设定阈值,用方向性强且深度低于或等于该阈值的像素形成初步的裂缝图像;最后,将裂缝图像划分为多个子块,设计去噪模板对裂缝图像进行滑动窗口去噪处理,获得最终裂缝图像.基于166幅含有各类裂缝的三维路面图像(2 048×2 048像素)进行测试分析,结果显示,本文算法获得了较高的准确率(均值91.57%)和召回率(均值81.29%),最终以84.26%的F1 均值优于种子识别算法(F1 均值69.19%)、Canny边缘检测(F1 均值8.15%)和OTSU分割(F1 均值5.11%).

     

  • WANG K C P. Design and implementation of automated systems for pavement surface distress survey[J]. ASCE Journal of Infrastructure Systems, 2000, 6(1): 24-32.
    WANG K C P, HOU Zhiqiong, GONG Weiguo. Automated road sign inventory system based on stereo vision and tracking[J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25(6): 468-477.
    OTSU N. A threshold selection method from gray-level histogram[J]. IEEE Trans. Systems Man Cybernet., 1979, 9(1): 62-66.
    王茜蒨,彭中,刘莉. 一种基于自适应阈值的图像分割算法[J]. 北京理工大学学报,2003,23(4): 521-524.WANG Qianqian, PENG Zhong, LIU Li. An adaptive method of image segmentation[J]. Transactions of Beijing Institute of Technology, 2003, 23(4): 521-524.
    TSAI Y, KAUL V, MERSEREAU R M. Critical assessment of pavement distress segmentation methods[J]. J. Transport. Eng., 2010, 136(1): 11-19.
    CANNY J. A computational approach to edge detection [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8(6): 679-698.
    WANG H, ZHU N, WANG Q. Segmentation of pavement cracks using differential box-counting approach[J]. J. Harbin Inst. Technol., 2007, 39(1): 142-144.
    张娟,沙爱民,孙朝云,等. 基于相位编组法的路面裂缝自动识别[J]. 中国公路学报,2008,21(2): 39-42.ZHANG Juan, SHA Aimin, SUN Chaoyun, et al. Pavement crack automatic recognition based on phase-grouping method[J]. China Journal of Highway Transport, 2008, 21(2): 39-42.
    马常霞,赵春霞,狄峰,等. 自然环境下路面裂缝的识别[J]. 工程图学学报,2011,32(4): 20-26. MA Changxia, ZHAO Chunxia, DI Feng, et al. Road crack detection under natural environment[J]. Journal of Engineering Graphics, 2011, 32(4): 20-26.
    HUANG Yaxiong, XU Bugao. Automatic inspection of pavement cracking distress[J]. J. Electron. Imaging, 2006, 15(1): 013017.1-013017.6.
    GAVIL N M, BALCONES D, MARCOS O, et al. Adaptive road crack detection system by pavement [JP2]classification[J]. Sensors, 2011, 11(10): 9628-9657.
    WANG Gang, XIAO Liang, HE Anzhi. Algorithm research of adaptive fuzzy image enhancement in ridgelet transform domain[J]. Acta Optica Sinica, 2007, 27(7): 1183-1190.
    孙波成,邱延峻,梁世庆. 基于小波的路面裂缝识别研究[J]. 重庆交通大学学报:自然科学版,2010,29(1): 69-72. SUN Bocheng, QIU Yanjun, LIANG Shiqing. Cracking recognition of pavement surface based on wavelet technology[J]. Journal of Chongqing Jiaotong University: Natural Science, 2010, 29(1): 69-72.
    CHENG H D, WANG Jingli, HU Y G, et al. Novel approach to pavement cracking detection based on neural network[J]. Transport Res. Rec., 2001, 1764: 119-127.
    谢峰,马智民,栾卫东. 基于模糊神经网络的高速公路路面质量评价[J]. 西南交通大学学报,2013,48(1): 160-164. XIE Feng, MA Zhimin, LUAN Weidong. Quality evaluation of expressway pavement based on fuzzy neural networks[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 160-164.
    MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(5): 530-549.
    HU Yong, ZHAO Chunxia, WANG Hongnan. Automatic pavement crack detection using texture and shape descriptors[J]. IETE Technical Review, 2010, 27(5): 398-405.
    CHOU J, O'NEILL W A, CHENG Hengda. Pavement distress evaluation using fuzzy logic and moments invariants[J]. Transport Res. Rec., 1995, 1505: 39-46.
    CHENG H D, CHEN J R, GLAZIER C, et al. Novel approach to pavement cracking detection based on fuzzy set theory[J]. J. Comput. Civ. Eng., 1999, 13(4): 270-280.
    贾超,邹琪,姚芳,等. 基于神经网络与模糊算法图像边缘检测方法[J]. 计算机应用研究,2008,25(11): 3507-3509. JIA Chao, ZOU Qi, YAO Fang, et al. Image edge detection based on neural network and fuzzy algorithm[J]. Application Research of Computers, 2008, 25(11): 3507-3509.
    ZOU Qin, CAO Yu, LI Qingquan, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238.
    ROLI F. Measure of texture anisotropy for crack detection on textured surfaces[J]. Electronics Letters, 1996, 32(14): 1274-1275.
    NGUYEN T S, AVILA M, STEPHANE B. Automatic detection and classification of defect on road pavement using anisotropy measure[C]// The 17th European [JP3]Signal Processing Conference (EURIPCO09). Glasgow: [s.n.], 2009: 617-621.
    LI Qingquan, ZOU Qin, LIU Xianglong. Pavement crack classification via spatial distribution features[J]. EURASIP Journal on Advances in Signal Processing, 2011, 2011: 649675.
  • 加载中
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  91
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-22
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回