• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

复杂生产过程的小故障检测与分类方法

张敏 程文明 刘娟

张敏, 程文明, 刘娟. 复杂生产过程的小故障检测与分类方法[J]. 西南交通大学学报, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016
引用本文: 张敏, 程文明, 刘娟. 复杂生产过程的小故障检测与分类方法[J]. 西南交通大学学报, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016
ZHANG Min, CHENG Wenming, LIU Juan. Small Fault Detection and Classification Method for Complex Production Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016
Citation: ZHANG Min, CHENG Wenming, LIU Juan. Small Fault Detection and Classification Method for Complex Production Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016

复杂生产过程的小故障检测与分类方法

doi: 10.3969/j.issn.0258-2724.2014.05.016
基金项目: 

中央高校基本科研业务费专项资金资助项目(2682014BR022)

国家自然科学基金资助项目(51205328,51175442)

教育部人文社会科学研究青年基金资助项目(12YJCZH296)

Small Fault Detection and Classification Method for Complex Production Process

  • 摘要: 为监测复杂生产过程的状态,根据多元统计过程控制方法和支持向量机理论,将累积和控制图原理扩展为多变量的形式对过程数据进行预处理,并通过主元分析方法提取复杂生产过程的关键信息,得到有效的小故障数据,进而构建计算正常数据的统计量阀值及故障数据的Hotelling T平方统计值(T2)和平方预测误差值,实现了复杂生产过程的小故障模式检测,并采用支持向量机多分类方法将检测到的故障进行了分类.沥青混合料生产过程的仿真研究表明:在集料均值发生小波动、周期性上升和下降3种小故障模式下,故障检测识别率均达到95%,与主元分析方法相比平均提高了75%;分类准确率达到92.5%,与BP神经网络方法相比提高了19.3%.

     

  • RUNGER G C, ALT F B, MONTGOMERY D C. Contributors to a multivariate statistical process control chart signal[J]. Communications in Statistics: Theory and Methods, 1996, 25(10): 2203-2213.
    WESTERHUIS J, GURDEN S P, SMILDE A K. Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95-114.
    LIEFTUCHT D, KRUGER U, XIE L, et al. Statistical monitoring of dynamic multivariate processes, part 2: identifying fault magnitude and signature[J]. Industrial and Engineering Chemistry Research, 2006, 45(5): 1677-1688.
    钱淑华,王新晴,李焕良. 二次型时频分布在机械故障诊断中的应用[J]. 西南交通大学学报,2003, 38(5): 578-580. QIAN Shuhua, WANG Xinqing, LI Huanliang. Application of quadric time-frequency distribution to mechanical fault diagnosis[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 578-580.
    WANG H Q, SONG Z H, LI P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods[J]. Industrial and Engineering Chemistry Research, 2002, 41(10): 2455-2464.
    GE Zhiqiang, SONG Zhihuan, YANG Chujie. Small shift detection based on MCUSUM-ICA-PCA[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(3): 373-411.
    ZHANG Min, CHENG Wenming. Fault diagnosis method based on wavelet packet transform and kernel principal component analysis[J]. Journal of Compu-tational Information Systems, 2012, 8(14): 5835-5842.
    邱天,白晓静,郑茜予,等. 多元指数加权移动平均主元分析的微小故障检测[J]. 控制理论与应用,2014,31(1): 19-26. QIU Tian, BAI Xiaojing, ZHENG Xiyu, et al. Incipient fault detection of multivariate exponentially weighted moving average principal component analysis[J]. Control Theory and Applications, 2014, 31(1): 19-26.
    张杰,阳宪惠. 多变量统计过程控制[M]. 北京:化学工业出版社,2000: 30-70.
    LAU K W, WU Q H. Online training of support vector classifier[J]. Pattern Recognition, 2003, 36(8): 1913-1920.
    COSTACHE G N, CORCORAN P, PUSLECKI P. Combining PCA-based datasets without retraining of the basis vector set[J]. Pattern Recognition Letters, 2009, 30(16): 1441-1447.
    TAMURA M, TSUJITA S. A study on the number of principal components and sensitivity of fault detection using PCA[J]. Computers and Chemical Engineering, 2007, 31(9): 1035-1046.
    RANAEE V, EBRAHIMZADEH A, GHADERI R. Application of the PSO-SVM model for recognition of control chart patterns[J]. ISA Transaction, 2010, 49(4): 577-586.
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报,2014,49(1): 27-32. QIN Na, JIN Weidong, HUANG Jin, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    ABADURMUS O, PATHAK O, SMITH J S, et al. A simulation methodology for online process control of hot mix asphalt (HMA) production[C]//Proceedings of the 2010 Winter Simulation Conference. Baltimore:[s.n.], 2010: 522-1533.
  • 加载中
计量
  • 文章访问数:  789
  • HTML全文浏览量:  56
  • PDF下载量:  548
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-20
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回