锥度化方形截面高层建筑的气动力特性
doi: 10.3969/j.issn.0258-2724.2014.05.005
Aerodynamic Characteristics of Tapered Tall Buildings with Square Section
-
摘要: 用高频测力天平技术,对不同锥度比的方形截面高层建筑进行了风洞试验,分析了锥度比、湍流度和风向角对方形截面高层建筑基底弯(扭)矩系数、基底弯(扭)矩谱密度与基底弯(扭)矩间相关性的影响.试验结果表明:锥度化措施能减小方形截面高层建筑基底弯(扭)矩系数幅值25%以上,但不能改变基底气动力随风向角的变化规律;锥度化措施能减小所有折减频率范围内顺风向与扭转向基底弯矩谱,但只能减小低频区域横风向基底弯矩谱和谱峰高度,却增大旋涡脱落频率和高频区横风向基底弯矩谱;随来流湍流度增大,锥度化措施对风荷载的抑制效果减弱;折减频率在0.10到0.15时,锥度化措施能增大横风向基底弯矩与基底扭矩间的相关性.Abstract: Square tall buildings with different taper ratios were tested using the high frequency force balance (HFFB) technique in two different simulated wind fields. The effects of taper ratio, turbulence intensity and wind direction on aerodynamic base moment and torque coefficients, the power spectrum densities (PSD) of along- and across-wind base moments and torques, and the correlation between base moment and torque were analyzed systematically. The test results indicate that tapering of square tall buildings can reduce the amplitudes of the aerodynamic base moment and torque coefficients by 25% or more, but can not change the law of aerodynamic wind loads varying with wind directions. The tapering measure can reduce the PSDs of along-wind base moment and torque within all the reduced frequencies, but it can only reduce the spectral peak value of the PSD of across-wind base moment in low frequency region, and increase the frequency of the vortex shedding and the PSD value in high frequency region. With the turbulence intensity increasing, the effect of the tapering measure becomes weak. The coherence between across-wind base moment and torque is increased by the tapering measure when the reduced frequency is between 0.10 and 0.15.
-
IRWIN P A. Bluff body aerodynamics in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 701-712. 顾明. 土木结构抗风研究进展及基础科学问题[C]//第七届全国风工程和工业空气动力学学术会议论文集. 成都:西南交大大学出版社,2006: 67-83. 全涌,陈斌,顾明. 大高宽比方形截面高层建筑的横风向风荷载及风致响应研究[J]. 建筑结构,2010,40(2): 89-92. QUAN Yong, CHEN Bin, GU Ming. Across-wind loads and response of square high-rise buildings with large aspect ratios[J]. Building Structure, 2010, 40(2): 89-92. 顾明,张正维,全涌. 降低超高层建筑横风向响应的气动措施研究进展[J]. 同济大学学报:自然科学版,2013,41(3): 317-323. GU Ming, ZHANG Zhengwei, QUAN Yong. Aerodynamic measures for mitigation of across-wind responses of super tall buildings: state of the art[J]. Journal of Tongji University: Natural Science, 2013, 41(3): 317-323. COOPER K R, NAKAYAMA M, SASAKI Y, et al. Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72: 199-212. KIM Y M, YOU K P. Dynamic response of a tapered tall building to wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12): 1771-1782. KIM Y M, YOU K P, KO N H. Across-wind responses of an aeroelastic tapered tall building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(8): 1307-1319. YOU K P, KIM Y M, KO N H. The evaluation of wind-induced vibration responses to a tapered tall building[J]. The Structural Design of Tall and Special Buildings, 2008, 17(3): 655-667. KIM Y C, KANDA J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(8): 449-465. KIM Y C, KANDA J. Effects of taper and set-back on wind force and wind-induced response of tall buildings[J]. Wind and Structures, 2010, 13(6): 499-517. KIM Y C, KANDA J, TAMURA Y. Wind-induced coupled motion of tall buildings with varying square plan with height[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(5): 638-650. TAMURA Y, TANAKA H, OHTAKE K, et al. Aerodynamic characteristics of tall building models with various unconventional configurations[C]//Proceeding of the 2010 Structures Congress. Orlando: ASCE, 2010: 3104-3112. 李波,杨庆山,田玉基,等. 锥形超高层建筑脉动风荷载特性[J]. 建筑结构学报,2010,31(10): 8-16. LI Bo, YANG Qingshan, TIAN Yuji, et al. Characteristics of turbulent wind load of tapered super tall building[J]. Journal of Building Structures, 2010, 31(10): 8-16. 谢壮宁,李佳. 强风作用下楔形外形超高层建筑横风效应试验研究[J]. 建筑结构学报,2011,32(12): 118-126. XIE Zhuangning, LI Jia. Experimental research on cross wind effect on tapered super-tall buildings under action of strong wind[J]. Journal of Building Structures, 2011, 32(12): 118-126. 黄鹏,施宗城,陈伟,等. 大气边界层风场模拟及测试技术的研究[J]. 同济大学学报:自然科学版,2001,29(1): 40-44. HUANG Peng, SHI Zongcheng, CHEN Wei, et al. Simulation method and measuring technology of atmospheric boundary layer[J]. Journal of Tongji University: Natural Science, 2001, 29(1): 40-44. 中华人民共和国建设部. GB 50009—2001 建筑结构荷载规范[S]. 北京:中国建筑工业出版社,2006. 全涌,张正维,顾明,等. 矩形截面高层建筑横风向基底弯矩系数均方根值研究[J]. 土木工程学报,2012,45(4): 63-70. QUAN Yong, ZHANG Zhengwei, GU Ming, et al. Study of the RMS values of across-wind aerodynamic base moment coefficients of high-rise buildings with square or rectangular sections[J]. China Civil Engineering Journal, 2012, 45(4): 63-70. 顾明,叶丰. 典型超高层建筑风荷载频域特性研究[J]. 建筑结构学报,2006,27(1): 30-36. GU Ming, YE Feng. Frequence domain characteristics of wind loads on typical super-tall buildings[J]. Journal of Building Structures, 2006, 27(1): 30-36. 魏宗舒. 概率论与数理统计教程[M]. 北京:高等教育出版社,2008: 130-147. 周晅毅. 大跨度屋盖结构风荷载及风致响应研究 . 上海:同济大学土木工程学院,2004.
点击查看大图
计量
- 文章访问数: 988
- HTML全文浏览量: 86
- PDF下载量: 600
- 被引次数: 0