Analytical Method for Calculating Dynamic Response of Coupled Train-Bridge System Based on Duhamel Integral
-
摘要: 为了缩短求解车桥耦合系统动力响应的计算时间,利用振型分解法对车桥耦合系统的桥梁子系统和车辆子系统解耦,假定在每一时间步长内车桥相互作用力线性变化,借助Duhamel积分解析解,通过迭代得到系统的动力响应,提出了一种新型的车桥耦合动力分析方法.以一节四轴客车匀速通过32 m简支梁为例进行了实验研究,结果表明:本文方法得到的车桥耦合系统的动力响应结果与Newmark-β方法的结果接近,各极值点相对误差均不超过1%;在保证相同的计算精度前提下,本文方法将积分步长提高至原来的5~10倍,提高了求解速度.
-
关键词:
- 车桥耦合系统 /
- 动力分析 /
- 振型分解法 /
- Duhamel积分 /
- Newmark-β方法
Abstract: In order to shorten the computation time of solving the dynamic response of a coupled train-bridge system, the modal decomposition method is used to decompose the train subsystem and bridge subsystem in the coupled system. Assuming that the vehicle-bridge interaction forces change linearly within each time step, the dynamic response of the system during this period is obtained by Duhamel integral. Based on this theory, a new method is proposed to analyze the dynamic response of the coupled train-bridge system. The proposed method is then used to analyze a 4-axle train passing through a 32 m simply-supported beam at a constant speed. The results show that the dynamic responses obtained by the proposed method for the coupled train-bridge system are very close to those obtained by the Newmark-β method, and the relative error at every extreme points is less than 1%. Compared with the Newmark-β method, the proposed method can increase the time interval of integration by at least 5-10 times while ensuring the precision. -
XIA H, DE ROECK G, GOICOLEA J M. Bridge vibration and controls: new research[M]. New York: Nova Science Publishers Inc., 2011: 15-65. 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社,2007: 1-11,116-133. 翟婉明,夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社,2011: 8-23. 杜宪亭. 强地震作用下大跨度桥梁空间动力效应及列车运行安全研究. 北京:北京交通大学,2011. 夏禾,张楠. 车辆与结构相互作用[M]. 北京:科学出版社,2005: 11-29,88-92. 马继兵,蒲黔辉,霍学晋. 跨座式单轨交通PC轨道梁车桥耦合振动分析[J]. 西南交通大学学报,2009,44(6): 806-811,829. MA Jibing, PU Qianhui, HUO Xuejin. Vehicle-bridge coupling vibration analysis of PC rail beam of straddle-type monorail transportation[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 806-811, 829. 李小珍,马文彬,强士中. 车桥系统耦合振动分析的数值解法[J]. 振动与冲击,2002,21(3): 21-25. LI Xiaozhen, MA Wenbin, QIANG Shizhong. Coupling vibration analysis of vehicle-bridge system by iterative solution method[J]. Journal of Vibration and Shock, 2002, 21(3): 21-25. 李奇,吴定俊,邵长宇. 考虑车体柔性的车桥耦合系统建模与分析方法[J]. 振动工程学报,2011,24(1): 41-47. LI Qi, WU Dingjun, SHAO Changyu. Modeling and dynamic analysis method of vehicle-bridge coupling system considering car-body flexibility[J]. Journal of Vibration Engineering, 2011, 24(1): 41-47. YANG Y B, LIN B H. Vehicle-bridge interaction analysis by dynamic condensation method[J]. Structure Engineering ASCE, 1995, 121(11): 1636-1643. 沈火明,肖新标. 求解车桥耦合振动问题的一种数值方法[J]. 西南交通大学学报,2003,38(6): 658-662. SHEN Huoming, XIAO Xinbiao. Numerical method for vehicle-bridge coupled vibrations[J]. Journal of Southwest Jiaotong University, 2003, 38(6): 658-662. ZHAI W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(4): 4199-4214. 翟婉明. 非线性结构动力分析的Newmark预测-校正积分模式[J]. 计算结构力学及其应用,1990,7(2): 51-58. ZHAI Wanming. The predictor-corrector scheme based on the Newmarks integration algorithm for nonlinear structural dynamic analyses[J]. Chinese Journal of Computational Mechanics, 1990, 7(2): 51-57. 张纯,胡振东,仲政. 车桥耦合振动分析的Haar小波方法[J]. 振动与冲击,2007,26(4): 77-80. ZHANG Chun, HU Zhendong, ZHONG Zheng. Vibration analysis for vehicle/bridge interacation by Haar wavelet method[J]. Journal of Vibration and Shock, 2007, 26(4): 77-80. 杜宪亭,夏禾,张田,等. 基于精细Runge-Kutta混合积分法的车桥耦合振动非迭代求解算法[J]. 振动与冲击,2013,32(13): 39-42,55. DU Xianting, XIA He, ZHANG Tian, et al. Non-iterative solving algorithm for coupled vibration of a train-bridge system based on precise Runge-Kutta hybrid integration method[J]. Journal of Vibration and Shock, 2013, 32(13): 39-42, 55. CLOUGH R W, PENZIEN J. Dynamics of structures[M]. 3rd ed. New York: Computers and Structures Inc., 1995: 87-96. BATHE K J. Finite element procedures in engineering analysis[M]. : Prentice-Hall Inc., 1982: 801-815.
点击查看大图
计量
- 文章访问数: 940
- HTML全文浏览量: 80
- PDF下载量: 580
- 被引次数: 0