• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一类周期系数力学系统分岔控制

郑小武 谢建华

郑小武, 谢建华. 一类周期系数力学系统分岔控制[J]. 西南交通大学学报, 2014, 27(4): 741-745. doi: 10.3969/j.issn.0258-2724.2014.04.028
引用本文: 郑小武, 谢建华. 一类周期系数力学系统分岔控制[J]. 西南交通大学学报, 2014, 27(4): 741-745. doi: 10.3969/j.issn.0258-2724.2014.04.028
ZHENG Xiaowu, XIE Jianhua. Bifurcation Control of Mechanical System with Periodic Coefficients[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 741-745. doi: 10.3969/j.issn.0258-2724.2014.04.028
Citation: ZHENG Xiaowu, XIE Jianhua. Bifurcation Control of Mechanical System with Periodic Coefficients[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 741-745. doi: 10.3969/j.issn.0258-2724.2014.04.028

一类周期系数力学系统分岔控制

doi: 10.3969/j.issn.0258-2724.2014.04.028
基金项目: 

国家自然科学基金资助项目(11172246)

中央高校基本科研业务费专项资金资助项目(SWJTU12cx046,SWJTU11zt15)

Bifurcation Control of Mechanical System with Periodic Coefficients

  • 摘要: 为了控制周期系数微分系统平衡点失稳后的分岔行为,基于Floquet-Lyapunov理论,将控制常系数系统分岔行为的方法(线性法、参数法、平移法)应用于一类具有周期系数的力学微分系统,设计了相应的控制器,研究了其控制平衡点分岔行为的有效性.研究结果表明:平移法不能有效控制周期系数微分系统的平衡点失稳后发生的Flip分岔和Hopf分岔行为.若平衡点失稳发生Flip分岔形成周期2点,可分别采用线性法和参数法将周期2点控制到周期1点;若平衡点失稳发生Hopf分岔形成Hopf圈,可分别采用线性法和参数法将Hopf圈控制到周期1点.

     

  • JUNE Y L, YAN J J. Control of impact oscillator[J]. Chaos, Solitons and Fractals, 2006, 28: 136-142.
    HUBLER A, LUSCHER E. Resonant stimulation of complex systerms[J]. Helvetica Physica Acta, 1989, 62: 544-551.
    胡岗,萧井华,郑志刚. 混沌控制[M]. 上海: 上海科技教育出版社, 2000: 12.
    OTT E, GREBOGI C, YORK J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196- 1199.
    唐驾时,欧阳克俭. Logistic模型的倍周期分岔控制[J]. 物理学报,2006,55(9): 437-431. TANG Jianshi, OUYANG Kejian. Controlling the period-doubling bifurcation of logistic mode[J]. Acta Physica Sinica, 2006, 55(9): 437-431.
    于津江,刘学军,韩万强,等. 平移法控制离散系统的倍周期分岔和混沌[J]. 计算物理,2007,24(1): 116-120. YU Jinjiang, LIU Xuejun, HAN Wanqiang, et al. Control period-doubting bifurcation and chaos in a discrete nonlinear system by translation[J]. Chinese Journal of Computational Physics, 2007, 24(1): 116-120.
    罗晓曙,陈关荣,汪秉宏,等. 状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌[J]. 物理学报,2003,52(4): 790-794. LUO Xiaoshu, CHEN Guanrong, WANG Binghong, et al. Control of period-doubling bifurcation and chaos in a discrete nonlinear system by the feedback of states and parameter adjustment[J]. Acta Physica Sinica, 2003, 52(4): 790-794.
    舒仲周,张继业,曹登庆. 运动稳定性[M]. 北京: 中国铁道出版社, 2001: 15-30.
    SINHA S C, PANDIYAN R. Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov-Floquet transformation[J]. International Journal of Nonlinear Mechanics, 1994, 29(5): 687-702.
    ALEXANDRA D,SINHA S C. Bifurcation control of nonlinear systems with time-periodic coefficients[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125: 541-548.
    SINHA S C, REDKAR S, ERIC A B. Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds[J]. Journal of Sound and Vibration, 2005, 284: 985-1002.
    SINHA S C, GOURDON E, ZHANG Y. Control of time-periodic system via symbolic computation with application to chaos control[J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10: 835-854.
    郑小武. 两自由度机械臂λ2=1下的Hopf分岔与混沌研究[J]. 应用力学学报,2008,25(2): 312-315. ZHENG Xiaowu. Hopf bifurcation while λ2=1 and chaos of a mechanical system with periodic coefficients[J]. Chinese Journal of Applied Mechanics, 2008, 25(2): 312-315.
    郑小武. 一类周期系数力学系统的Hopf-Flip分岔[J]. 振动工程学报,2007,20(4): 412-416. ZHENG Xiaowu. Hopf-Flip bifurcations of a two-degree-of-freedom mechanical system with periodic coefficients[J]. Journal of Vibration Engineering, 2007, 20(4): 412-416.
    郑小武. 两自由度机械手周期运动的倍周期分岔[J]. 西南交通大学学报,2006,41(3): 396-399. ZHENG Xiaowu. Period-doubling bifurcations of period motion of a two-degree-of-freedom manipulator[J]. Journal of Southwest Jiaotong University, 2006, 41(3): 396-399.
  • 加载中
计量
  • 文章访问数:  755
  • HTML全文浏览量:  56
  • PDF下载量:  547
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-30
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回