• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

无侵入测量指标的驾驶疲劳检测性能评估

胥川 王雪松 陈小鸿

胥川, 王雪松, 陈小鸿. 无侵入测量指标的驾驶疲劳检测性能评估[J]. 西南交通大学学报, 2014, 27(4): 720-726. doi: 10.3969/j.issn.0258-2724.2014.04.025
引用本文: 胥川, 王雪松, 陈小鸿. 无侵入测量指标的驾驶疲劳检测性能评估[J]. 西南交通大学学报, 2014, 27(4): 720-726. doi: 10.3969/j.issn.0258-2724.2014.04.025
XU Chuan, WANG Xuesong, CHEN Xiaohong. Evaluating Performance of Non-intrusive Indicators on Drowsy Driving Detection[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 720-726. doi: 10.3969/j.issn.0258-2724.2014.04.025
Citation: XU Chuan, WANG Xuesong, CHEN Xiaohong. Evaluating Performance of Non-intrusive Indicators on Drowsy Driving Detection[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 720-726. doi: 10.3969/j.issn.0258-2724.2014.04.025

无侵入测量指标的驾驶疲劳检测性能评估

doi: 10.3969/j.issn.0258-2724.2014.04.025
详细信息
    通讯作者:

    王雪松(1977- ),男,教授,博士,研究方向为交通安全、交通统计分析、交通规划、驾驶模拟器应用,E-mail:wangxs@tongji.edu.cn

Evaluating Performance of Non-intrusive Indicators on Drowsy Driving Detection

  • 摘要: 为了准确检测驾驶疲劳状态,利用高仿真度驾驶模拟器进行模拟实验,采集了驾驶行为和眼动数据,并进行了主观疲劳程度调查.在此基础上,设计了23种无侵入检测指标,从与疲劳的相关性、二元检测性能、对道路线形的敏感性和个体一致性4方面,评估了指标的性能并按综合性能排序.研究结果表明:眼闭合时间比例与主观疲劳程度(Karolinska sleepiness scale,KSS)的相关性最高,为0.443;二元检测性能最好的是眼闭合时间比例和车道偏移标准差;眼动指标在曲-直路段的变化幅度均低于20%;当KSS为7时,除车中心越线时间比例外,其余指标均存在显著的个体差异;综合性能最高的指标依次为车道偏移标准差、闭眼时间比例和越线期间横向平均速度.

     

  • KLAUER S G, DINGUS T A, NEALE V L, et al. The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data. Washington D. C.: National Highway Traffic Safety Administration, 2006.
    公安部交通管理局. 中华人民共和国道路交通事故统计资料汇编2001—2008[R]. 北京:公安部交通管理局,2009.
    LI W, HE Q C, FAN X M, et al. Evaluation of driver fatigue on two channels of EEG data[J]. Neuroscience Letters, 2012, 506(2): 235-239.
    PATEL M, LAL S K L, KAVANAGH D, et al. Applying neural network analysis on heart rate variability data to assess driver fatigue[J]. Expert Systems with Applications, 2011, 38(6): 7235-7242.
    LIU C C, HOSKING S G, LENN M G. Predicting driver drowsiness using vehicle measures: recent insights and future challenges[J]. Journal of Safety Research, 2009, 40(4): 239-245.
    FORSMAN P M, VILA B J, SHORT R A, et al. Efficient driver drowsiness detection at moderate levels of drowsiness[J]. Accident Analysis and Prevention, 2013, 50: 341-350.
    INGRE M, KERSTEDT T, PETERS B, et al. Subjective sleepiness, simulated driving performance and blink duration: examining individual differences[J]. Journal of Sleep Research, 2006, 15(1): 47-53.
    JO J, LEE S J, PARK K R, et al. Detecting driver drowsiness using feature-level fusion and user-specific classification[J]. Expert Systems with Applications, 2014, 41(4): 1139-1152.
    ZHU Z, JI Q. Real time and non-intrusive driver fatigue monitoring[C]//The 7th International IEEE Conference on Intelligent Transportation Systems Proceedings. Washington D. C.: IEEE, 2004: 657-662.
    JI Q, YANG X. Real-time eye, gaze, and face pose tracking for monitoring driver vigilance[J]. Real-Time Imaging, 2002, 8(5): 357-377.
    HU S, BOWLDS R L, GU Y, et al. Pulse wave sensor for non-intrusive driver's drowsiness detection[C]// Engineering in Medicine and Biology Society. : IEEE, 2009: 2312-2315.
    NODINE E. The detection of drowsy drivers through driver performance indicators[M]. Ann Arbor: UMI Dissertation Publishing, 2008: 65-76.
    张丽雯,杨艳芳,齐美彬,等. 基于面部特征的疲劳驾驶检测[J]. 合肥工业大学学报:自然科学版,2013,36(4): 448-451. ZHANG Liwen, YANG Yanfang, QI Meibin, et al. Detection of fatigue driving based on facial features[J]. Journal of Hefei University of Technology: Natural Science, 2013, 36(4): 448-451.
    朱淑亮. 基于视频图像分析与信息融合的驾驶员疲劳检测技术研究[D]. 济南:山东大学,2011.
  • 加载中
计量
  • 文章访问数:  988
  • HTML全文浏览量:  82
  • PDF下载量:  701
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-13
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回