城市路网模块结构探测及Hub路段诊断算法
doi: 10.3969/j.issn.0258-2724.2014.04.023
Algorithm for Detecting Modular Structures and Diagnosing Hub Sections in Urban Road Network
-
摘要: 为了剖析城市路网拓扑结构的复杂性,识别路网中的关键路段,根据模块结构理论,分析了城市路网的聚类特性,提出了一种适用于城市路网模块结构划分和Hub路段诊断的算法——GN-T算法.该算法通过逐条移除介值最大的路段实现模块结构的划分,从而诊断出路网中的Hub路段.为确定模块结构的最佳划分,提出了一个改进的模块度函数.以武昌区路网为例对该算法进行验证,结果显示:武昌区路网模块度的最大值为0.41,表明该路网具有明显的模块结构特性;利用该算法诊断出的Hub路段与实际情况相符,证明了该算法的有效性和实用性.Abstract: In order to detect the complexities of topology and discover the key road sections in urban road network, the clustering feature of urban road network was analyzed by modular structure theory, and a GN-T algorithm was proposed for dividing the modular structures and diagnosing hub sections in the urban road network. By iterative removal of links with the maximum intermediate values from road network, this algorithm split the whole network into modular structures and found out hub sections. In addition, an improved modularity function was also proposed for determining the optimal number of modular structures in the urban road network. As a case study, the urban road network of Wuchang city was used to test and verify the algorithm. The results show that the maximal value of modularity in the network is 0.41, indicating that the urban road network of Wuchang city possesses obvious modular structure characteristics. In addition, the hub sections derived from the algorithm is consistent with the reality. All these demonstrate the effectiveness and practicability of the GN-T algorithm.
-
Key words:
- urban road network /
- complex network /
- modular structures /
- GN-T algorithm /
- hub sections
-
GUIMERA R, MOSSA S, TURTSCHI A, et al. The world-wide air transportation network: anomalous centrality, community structure, and cities' global roles[C]//Proceedings of the National Academy of Sciences USA. Washington D. C.[s.n]:, 2005: 7794-7799. 卢守峰,杨兆升,刘喜敏. 基于复杂性理论的城市交通系统研究[J]. 吉林大学学报:工学版,2006,36(3): 153-156. LU Shoufeng, YANG Zhaosheng, LIU Ximin. Research on urban traffic system based on complexity theory[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(3): 153-156. SEN P, DASGUPTA S, CHATTERJEE A, et al. Small-world properties of the Indian railway network[J]. Physical Review E, 2003, 67: 036106. SIENKIEWICZ J, HOLYST J A. Statistical analysis of 22 public transport networks in Poland[J]. Physical Review E, 2005, 72: 046127. PORTA S, CRUCITTI P, LATORA V. The network analysis of urban streets: a dual approach[J]. Environment and Planning B: Planning and Design, 2006, 33(5): 705-725. LI X G, GAO Z Y, LI K P, et al. The relationship between microscopic dynamics in traffic flow and complexity in network[J]. Physical Review E, 2007, 76: 016110. 汪小帆,陈关荣,李翔. 复杂网络理论及其应用[M]. 北京:清华大学出版社,2006: 156-162. NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69: 026113. RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proc. Natl. Acad. Sci., 2004, 101: 2658-2663. CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure networks[J]. Physical Review E, 2004, 70: 066111. CAPOCCI A, SERVEDIO V D P, CALDARELLI G, et al. Detecting communities in large networks[J]. Computer Science, 2004, 3243: 181-187. FORTUNATE S, LATORA V, MARICHIORI M. A method to find community structures based on information centrality[J]. Physical Review E, 2004, 70: 056104. DUCH J, ARENAS A. Community detection in complex networks using extreme optimization[J]. Physical Review E, 2005: 72: 027104. TAYLOR M A P, D'ESTE G M. Critical infrastructure and transport network vulnerability: developing a method for diagnosis and assessment[C]// Proceedings of the Second International Symposium on Transportation Network Reliability (INSTR). Christchurch:[s.n], 2004: 96-102. JENELIUS E, PERERSEN T, MATTSSON L G. Importance and exposure in road network vulnerability analysis[J]. Transportation Research Part A, 2006, 40: 537-560.
点击查看大图
计量
- 文章访问数: 875
- HTML全文浏览量: 68
- PDF下载量: 660
- 被引次数: 0