高速动车组弹性车体和设备耦合振动特性
doi: 10.3969/j.issn.0258-2724.2014.04.021
Coupled Vibration Characteristics of Flexible Car Body and Equipment of EMU
-
摘要: 为研究车体和车下设备之间的耦合振动关系,建立了高速动车组的车辆刚柔耦合系统动力学模型;考虑车体弹性模态振动,采用扫频激励法,仿真分析设备质量、刚度、阻尼和安装位置对系统振动的影响;研究了不同参数相互作用下的振动特性.研究结果表明:与设备采用固接方式相比,弹性联接可显著降低车体弹性振动,设备质量越大且越靠近车体中部安装,对抑制弹性振动效用越显著;设备质量小于1.0 t或者距离车体中心6 m以上时,降低弹性振动的效果较小,阻尼比为5%~30%时,效果较好.利用机车车辆滚动振动试验台进行设备悬挂振动特性测试,表明设备采用弹性联接可显著改善高速动车组的乘坐平稳性,运行速度等级越高,效果越显著,最大可改善约15%.Abstract: To study the coupled vibration between a flexible car body and its suspended equipment, a rigid-flexible coupling dynamic model of high-speed electric multiple units (EMUs) was established taking into account the flexible modes of the car body. The swept frequency excitation method was used to analyze the influence of suspension parameters on the system vibration, such as the equipment mass, suspension frequency, damping, and mounting position. Then, the vibration characteristics of the system were studied under the interplay between various parameters. The results show that the flexible vibration could be reduced significantly by the elastic suspension of equipment compared to the rigid suspension case. The system showed a good vibration absorber performance if the heavy equipment was suspended elastically close to the car body center, while it had a little effect on the flexible vibration reduction if the equipment mass was lower than 1.0 t or more than 6 m apart away from the center. Furthermore, the damping ratio of the elastic suspension should remain in a certain range from 5% to 30%. In addition, a laboratory test was conducted on a vehicle rolling and vibration test rig. The test results show a good agreement with the simulation ones: the elastic suspension can improve the riding comfort obviously, and the effect increases with the running speed increasing, with a maximum reduction of about 15% at a certain speed.
-
Key words:
- EMU /
- flexible carbody /
- equipment /
- coupled vibration
-
WU Pingbo, ZENG Jing, DAI Huanyun. Dynamic response analysis of railway passenger car with flexible carbody model based on semi-active suspensions[J]. Vehicle System Dynamics, 2004, 41: 774-783. FOO E, GOODALL R M. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magnetic actuators[J]. Control Engineering Practice, 2000, 8(5): 507-518. ZHOU J, GOODALL R, REN L, et al. Influences of carbody vertical flexibility on ride quality of passenger railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2009, 223(5): 461-471. 曾京,罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J]. 铁道学报,2007,29(6): 19-25. ZENG Jing, LUO Ren. Vibration analysis of railway passenger car systems by considering flexible carbody effect[J]. Journal of the China Railway Society, 2007, 29(6): 19-25. 吴会超,邬平波,吴娜,等. 车下设备悬挂参数与车体结构之间匹配关系研究[J]. 振动与冲击,2013,32(3): 124-128. WU Huichao, WU Pingbo, WU Na, et al. Matching relations between equipment suspension parameters and a carbody structure[J]. Journal of Vibration and Shock, 2013, 32(3): 124-128. 宫岛,周劲松,孙文静,等. 下吊设备对高速列车弹性车体垂向运行平稳性影响[J]. 中国工程机械学报,2011,9(4): 404-409. GONG Dao, ZHOU Jinsong, SUN Wenjing, et al. Impacts of hanging equipment on vertical riding stability of elastic high-speed train bodies[J]. Chinese Journal of Construction Machinery, 2011, 9(4): 404-409. SUN W, GONG D, ZHOU J, et al. Influences of suspended equipment under car body on high-speed train ride quality[J]. Procedia Engineering, 2011, 16: 812-817. HOLST C. Active damping of carbody vibrations[D]. Stockholm: Royal Institute of Technology, 1998: 877-880. TAKIGAMI T, TOMIOKA T. Bending vibration suppression of railway vehicle carbody with piezoelectric elements[J]. Journal of Mechanical Systems for Transportation and Logistics, 2008, 1(1): 111-121. 张卫华,李艳,宋冬利. 高速列车运动稳定性设计方法研究[J]. 西南交通大学学报,2013,48(1): 1-9. ZHANG Weihua, LI Yan, SONG Dongli. Design methods for motion stability of high-speed trains[J]. Journal of Southwest Jiaotong University,2013,48(1): 1-9. SCHANDL G, LUGNER P, BENATZKY C, et al. Comfort enhancement by an active vibration reduction system for a flexible railway car body[J]. Vehicle System Dynamics, 2007, 45(9): 835-847. WICKENS A H. Fundamentals of rail vehicle dynamics[M].[S.I]: Swets & Zeitlinger Publishers, 2003: 173-205. CARLBOM P. Combining MBS with FEM for rail vehicle dynamics analysis[J]. Multibody System Dynamics, 2001, 6(3): 291-300. 期刊类型引用(26)
1. 王谢堂,高建敏,丁鑫,昌超,凌亮,王开云. 道岔冲击激扰对高速动车组车体弹性抖动的影响分析. 噪声与振动控制. 2024(01): 192-198 . 百度学术
2. 王成强,鲁寨军,王浩,程亚军,李凡松. 服役环境下动车车底装备滑槽疲劳载荷谱的编制与验证. 中南大学学报(自然科学版). 2024(05): 1922-1930 . 百度学术
3. 韦海菊,刘英博,邓锐. 车体与车下设备的耦合振动研究. 铁道机车与动车. 2022(04): 12-16+61 . 百度学术
4. 罗宇豪,池茂儒,吴兴文,赵明花,曹辉. 新型中低速磁浮车辆振动传递特性研究. 科学技术与工程. 2022(20): 8848-8855 . 百度学术
5. 肖望强,叶淑祯,王兴民,贾尚帅,潘德阔,卢大军. 动车组车体端墙粒子阻尼器减振的数值分析与实验研究. 中国机械工程. 2021(04): 481-489 . 百度学术
6. 冯瑶. 动车组车下大型设备振动特性分析研究. 机车车辆工艺. 2021(06): 1-4+28 . 百度学术
7. 宋浩,孟建军,董世昌. 地铁车辆车体关键连接结构振动特性研究. 铁道机车车辆. 2021(06): 121-128 . 百度学术
8. 窦伟元,张乐乐,张海峰,刘长青. 基于刚柔耦合动力学模型的高速列车铸铝横梁应力状态分析. 机械工程学报. 2020(02): 138-144 . 百度学术
9. 汪群生,曾京,朱彬,吴一,王勇. 基于最优控制理论的高速列车车下悬吊系统半主动悬挂. 机械工程学报. 2020(04): 160-167 . 百度学术
10. 汤劲松,王云鹏,徐聪. 铁道客车关键系统的模态规划研究. 铁道机车车辆. 2020(04): 57-63 . 百度学术
11. 汪群生,曾京,魏来,董浩,郑彪. 气动激扰下车体与悬吊设备耦合振动行为研究. 机械工程学报. 2019(04): 102-108 . 百度学术
12. 杨军. 动车组车辆车下悬吊设备线路振动特征分析. 城市轨道交通研究. 2019(02): 52-56 . 百度学术
13. 王剑,谢素明,马纪军. 高速动车组车下吊装联接参数对车体模态的影响. 大连交通大学学报. 2018(03): 35-38 . 百度学术
14. 王铁成,贾尚帅,韩铁礼. 动车组车下设备安装刚度对车体模态影响研究. 大连交通大学学报. 2018(03): 45-49 . 百度学术
15. 孙玮光,石芳,刘晓雪. 动车组车下吊装设备用橡胶减振器的研制. 大连交通大学学报. 2018(03): 39-44 . 百度学术
16. 田向阳. 车下有源悬吊设备与车体耦合振动研究. 噪声与振动控制. 2018(01): 137-142+219 . 百度学术
17. 李邦国. 动车组制动系统箱体类部件轻量化设计方法. 中国铁道科学. 2018(06): 112-118 . 百度学术
18. 朱涛,雷成,肖守讷,于金朋. 车下弹性吊挂设备悬挂刚度选取方法. 交通运输工程学报. 2018(05): 111-118 . 百度学术
19. 汪群生,曾京,魏来,郑彪. 车下悬吊设备不均衡振动对车体振动的影响. 铁道学报. 2017(02): 24-31 . 百度学术
20. 崔圣爱,刘品,曹艺缤,苏姣,祝兵. 多线铁路车桥耦合振动仿真研究. 西南交通大学学报. 2017(05): 835-843 . 本站查看
21. 匡成骁,曾京,汪群生. 车下悬吊系统长期服役振动特性及减振研究. 噪声与振动控制. 2017(04): 90-94+120 . 百度学术
22. 汪群生,曾京,罗光兵,魏来. 车轮磨耗下车下悬吊系统振动特性研究. 机械工程学报. 2016(10): 113-118 . 百度学术
23. 张远亮. 牵引变压器悬挂系统静刚度设计研究. 铁道机车车辆. 2016(02): 1-7 . 百度学术
24. 贺小龙,张立民,鲁连涛,邱飞力,田爱琴. 基于轻量化及刚度的铝合金车体承载结构参数选择研究. 铁道学报. 2016(11): 26-32 . 百度学术
25. Huailong Shi,Ren Luo,Pingbo Wu,Jing Zeng,Jinying Guo. Influence of equipment excitation on flexible carbody vibration of EMU. Journal of Modern Transportation. 2014(04): 195-205 . 必应学术
26. 张富兵,刘潮涛,邬平波,石怀龙,吴兴文,朱海燕. 高速列车设备舱底板的振动特性研究. 振动.测试与诊断. 2019(01): 184-190+229-230 . 百度学术
其他类型引用(23)
-

计量
- 文章访问数: 977
- HTML全文浏览量: 101
- PDF下载量: 736
- 被引次数: 49