• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

芦山地震余震发生及演化的自组织临界机制

刘春琼 史凯 李思川

刘春琼, 史凯, 李思川. 芦山地震余震发生及演化的自组织临界机制[J]. 西南交通大学学报, 2014, 27(4): 668-674. doi: 10.3969/j.issn.0258-2724.2014.04.017
引用本文: 刘春琼, 史凯, 李思川. 芦山地震余震发生及演化的自组织临界机制[J]. 西南交通大学学报, 2014, 27(4): 668-674. doi: 10.3969/j.issn.0258-2724.2014.04.017
LIU Chunqiong, SHI Kai, LI Sichuan. Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 668-674. doi: 10.3969/j.issn.0258-2724.2014.04.017
Citation: LIU Chunqiong, SHI Kai, LI Sichuan. Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 668-674. doi: 10.3969/j.issn.0258-2724.2014.04.017

芦山地震余震发生及演化的自组织临界机制

doi: 10.3969/j.issn.0258-2724.2014.04.017
基金项目: 

国家自然科学基金资助项目(41172321)

国家自然科学基金青年基金资助项目(41105118)

湖南省自然科学基金青年人才培养联合基金资助项目(13JJB012)

详细信息
    通讯作者:

    史凯(1980- ),男,副教授,硕士生导师,研究方向为非线性环境系统分析,E-mail:einboplure@163.com

Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake

  • 摘要: 为探讨芦山7.0级地震余震演化动力机制,应用统计地震学方法,分析了2013年4月20日—6月20日芦山地震余震序列的宏观统计分布规律;基于自组织临界理论,提出了一种新的余震模型,以期阐明相关统计地震学规律的产生动力机制,并深入讨论了该模型的自组织临界性.该余震模型的具体算法是在经典Olami-Feder-Christensen地震模型基础上,引入了应力衰减因子和应力扩散各向异性因子.研究结果表明:芦山7.0级地震余震序列的震级分布遵循Gutenberg-Richter统计规律,幂指数值约为0.766;其余震序列的时间分布遵循Omori统计规律,幂指数值约为2.52.新建模型的数值模拟能同时对芦山地震余震序列呈现出的Gutenberg-Richter和Omori统计规律给出满意的预测结果,模拟结果与实际情况高度吻合,表明龙门山断裂带处于一种自组织临界状态,芦山地震余震过程实质上是一种自组织临界现象.

     

  • 曾详方,罗艳,韩立波,等. 2013年4月20日四川芦山Ms7.0地震:一个高角度逆冲地震[J]. 地球物理学报,2013,56(4): 1418-1424. ZENG Xiangfang, LUO Yan, HAN Libo, et al. The Lushan Ms7.0 earthquake on 20 April, 2013: a high-angle thrust event[J]. Chinese Journal of Geophysics, 2013, 56(4): 1418-1424.
    杜方,龙锋,阮详,等. 四川芦山7.0级地震与汶川8.0级地震的关系[J]. 地球物理学报,2013,56(5): 1772-1783. DU Fang, LONG Feng, RUAN Xiang, et al. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(5): 1772-1783.
    王卫民,郝金来,姚振兴. 2013年4月20日四川芦山地震震源破裂过程的反演初步结果[J]. 地球物理学报,2013,56(4): 1412-1417. WANG Weimin, HAO Jinlai, YAO Zhenxing. Preliminary result for rupture process of Apr. 20, 2013, Lushan earthquake, Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(4): 1412-1417.
    KALYONCUOGLU U Y. Evaluation of seismicity and seismic hazard parameters in Turkey and surrounding area using a new approach to the Gutenberg-Richter relation[J]. Journal of Seismology, 2007, 11(2): 131-148.
    UTSU T, OGATA Y, MATSUURA R S. The centenary of the Omori formula for a decay law of aftershock activity[J]. Journal of Physics of the Earth, 1995, 43(1): 1-33.
    HAINZL S, ZOLLER G, KURTHS J. Similar power laws for fore- and aftershock sequences in a spring-block model for earthquakes[J]. Journal of Geophysical Research, 1999, 104(B4): 7243- 7253.
    ITO K, MATSUZAKI M. Earthquakes as self-organized critical phenomena[J]. Journal of Geophysical Research, 1990, 95(B1): 6853-6860.
    NUR A, BOOKER J R. Aftershocks caused by pore fluid flow?[J]. Science, 1972, 175(25): 885-887.
    DIETERICH J H. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. Journal of Geophysical Research, 1994, 99(B2): 2601-2618.
    SHCHERBAKOV R, TURCOTTE D L. A damage mechanics model for aftershocks[J]. Pure and Applied Geophysics, 2004, 161(11/12): 2379-2391.
    OLAMI Z, FEDER H J S, CHRISTENSEN K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes[J]. Physical Review Letters, 1992, 68(8): 1244-1247.
    HERGARTEN S, NEUGEBAUER H J. Foreshocks and aftershocks in the Olami-Feder-Christensen model[J]. Physical Review Letters, 2002, 88(23): 238501-1-238501-4.
    ZHANG Bin, SHI Kai, LIU Chunqiong, et al. Scaling behavior of magnitude clusters in aftershock sequence: an example of the Wenchuan earthquake, China[J]. Science China Earth Sciences, 2012, 55(3): 507-512.
    SHI Kai, DI Baofeng, LIU Chunqiong, et al. Wenchuan aftershocks as an example of self-organized criticality[J]. Journal of Asian Earth Sciences, 2012, 50(1): 61-65.
    BAK P, TANG C. Earthquakes as a self-organized critical phenomenon[J]. Journal of Geophysical Research, 1989, 94(B11): 15635-15637.
    BAK P, TANG C, WIESENFELD K. Self-organized criticality[J]. Physics Review A, 1988, 38(1): 364-374.
    GELLER R, JACKSON D, KAGAN Y, et al. Earthquakes cannot be predicted[J]. Science, 1997, 275: 1616-1617.
    CHEN K, BAK P, OBUKHOV S P. Self-organized criticality in a crack-propagation model of earthquakes[J]. Physical Review A, 1991, 43(2): 625-630.
    BAK P, CHEN K. Self-organized criticality[J]. Scientific American, 1991, 264(1): 26-33.
    ZHANG Shudong, HUANG Zuqia, DING Ejiang. Predictions of large events on a spring-block model[J]. Journal of Physics A, 1996, 29: 4445-4455.
    WANG Jinghong, XIE Shu, SUN Jinhua. Self-organized criticality judgment and extreme statistics analysis of major urban fires[J]. Chinese Science Bulletin, 2011, 56(6): 567-572.
  • 加载中
计量
  • 文章访问数:  895
  • HTML全文浏览量:  66
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-12
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回