Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake
-
摘要: 为探讨芦山7.0级地震余震演化动力机制,应用统计地震学方法,分析了2013年4月20日—6月20日芦山地震余震序列的宏观统计分布规律;基于自组织临界理论,提出了一种新的余震模型,以期阐明相关统计地震学规律的产生动力机制,并深入讨论了该模型的自组织临界性.该余震模型的具体算法是在经典Olami-Feder-Christensen地震模型基础上,引入了应力衰减因子和应力扩散各向异性因子.研究结果表明:芦山7.0级地震余震序列的震级分布遵循Gutenberg-Richter统计规律,幂指数值约为0.766;其余震序列的时间分布遵循Omori统计规律,幂指数值约为2.52.新建模型的数值模拟能同时对芦山地震余震序列呈现出的Gutenberg-Richter和Omori统计规律给出满意的预测结果,模拟结果与实际情况高度吻合,表明龙门山断裂带处于一种自组织临界状态,芦山地震余震过程实质上是一种自组织临界现象.
-
关键词:
- 芦山地震余震 /
- 自组织临界性 /
- 地震模型 /
- Gutenberg-Richter统计规律 /
- Omori统计规律
Abstract: The statistical relations of aftershocks following a strong earthquake can give useful information on the dynamical features of seismic processes and the involved geodynamical mechanisms. The sequence of aftershocks of the Lushan Ms7.0 earthquake, occurred on the Longmenshan tectonic zone in Sichuan Province, China, was analyzed. The analyses of magnitude and temporal statistical distributions in the aftershocks sequence described by the Gutenberg-Richter and Omori laws respectively were performed. To provide a possible explanation of these observed distributions, a novel SOC (self-organized criticality) model was developed by introducing stress decay coefficient and anisotropic diffusion factor into the Olami-Feder-Christensen model of earthquakes, and the self-organized criticality properties of this novel model were discussed. The research result shows that the aftershocks of the Lushan Earthquake follow the Gutenberg-Richter and Omori laws, and the power exponents are about 0.766 and 2.52 respectively. The developed model can give a good prediction of the Gutenberg-Richter and Omori laws in Lushan aftershocks together. And simulated results and observations have a high correspondence to indicate that Lushan aftershock is an example of an SOC process.-
Key words:
- Lushan aftershock /
- self-organized criticality /
- earthquake model /
- Gutenberg-Richter law /
- Omori law
-
曾详方,罗艳,韩立波,等. 2013年4月20日四川芦山Ms7.0地震:一个高角度逆冲地震[J]. 地球物理学报,2013,56(4): 1418-1424. ZENG Xiangfang, LUO Yan, HAN Libo, et al. The Lushan Ms7.0 earthquake on 20 April, 2013: a high-angle thrust event[J]. Chinese Journal of Geophysics, 2013, 56(4): 1418-1424. 杜方,龙锋,阮详,等. 四川芦山7.0级地震与汶川8.0级地震的关系[J]. 地球物理学报,2013,56(5): 1772-1783. DU Fang, LONG Feng, RUAN Xiang, et al. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(5): 1772-1783. 王卫民,郝金来,姚振兴. 2013年4月20日四川芦山地震震源破裂过程的反演初步结果[J]. 地球物理学报,2013,56(4): 1412-1417. WANG Weimin, HAO Jinlai, YAO Zhenxing. Preliminary result for rupture process of Apr. 20, 2013, Lushan earthquake, Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(4): 1412-1417. KALYONCUOGLU U Y. Evaluation of seismicity and seismic hazard parameters in Turkey and surrounding area using a new approach to the Gutenberg-Richter relation[J]. Journal of Seismology, 2007, 11(2): 131-148. UTSU T, OGATA Y, MATSUURA R S. The centenary of the Omori formula for a decay law of aftershock activity[J]. Journal of Physics of the Earth, 1995, 43(1): 1-33. HAINZL S, ZOLLER G, KURTHS J. Similar power laws for fore- and aftershock sequences in a spring-block model for earthquakes[J]. Journal of Geophysical Research, 1999, 104(B4): 7243- 7253. ITO K, MATSUZAKI M. Earthquakes as self-organized critical phenomena[J]. Journal of Geophysical Research, 1990, 95(B1): 6853-6860. NUR A, BOOKER J R. Aftershocks caused by pore fluid flow?[J]. Science, 1972, 175(25): 885-887. DIETERICH J H. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. Journal of Geophysical Research, 1994, 99(B2): 2601-2618. SHCHERBAKOV R, TURCOTTE D L. A damage mechanics model for aftershocks[J]. Pure and Applied Geophysics, 2004, 161(11/12): 2379-2391. OLAMI Z, FEDER H J S, CHRISTENSEN K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes[J]. Physical Review Letters, 1992, 68(8): 1244-1247. HERGARTEN S, NEUGEBAUER H J. Foreshocks and aftershocks in the Olami-Feder-Christensen model[J]. Physical Review Letters, 2002, 88(23): 238501-1-238501-4. ZHANG Bin, SHI Kai, LIU Chunqiong, et al. Scaling behavior of magnitude clusters in aftershock sequence: an example of the Wenchuan earthquake, China[J]. Science China Earth Sciences, 2012, 55(3): 507-512. SHI Kai, DI Baofeng, LIU Chunqiong, et al. Wenchuan aftershocks as an example of self-organized criticality[J]. Journal of Asian Earth Sciences, 2012, 50(1): 61-65. BAK P, TANG C. Earthquakes as a self-organized critical phenomenon[J]. Journal of Geophysical Research, 1989, 94(B11): 15635-15637. BAK P, TANG C, WIESENFELD K. Self-organized criticality[J]. Physics Review A, 1988, 38(1): 364-374. GELLER R, JACKSON D, KAGAN Y, et al. Earthquakes cannot be predicted[J]. Science, 1997, 275: 1616-1617. CHEN K, BAK P, OBUKHOV S P. Self-organized criticality in a crack-propagation model of earthquakes[J]. Physical Review A, 1991, 43(2): 625-630. BAK P, CHEN K. Self-organized criticality[J]. Scientific American, 1991, 264(1): 26-33. ZHANG Shudong, HUANG Zuqia, DING Ejiang. Predictions of large events on a spring-block model[J]. Journal of Physics A, 1996, 29: 4445-4455. WANG Jinghong, XIE Shu, SUN Jinhua. Self-organized criticality judgment and extreme statistics analysis of major urban fires[J]. Chinese Science Bulletin, 2011, 56(6): 567-572.
点击查看大图
计量
- 文章访问数: 895
- HTML全文浏览量: 66
- PDF下载量: 497
- 被引次数: 0