悬浮隧道锚索涡激疲劳损伤分析
doi: 10.3969/j.issn.0258-2724.2014.04.013
Vortex-Induced Fatigue Damage Analysis of Submerged Floating Tunnel Cable
-
摘要: 为了评估水中悬浮隧道锚索涡激疲劳损伤,根据Hamilton原理,考虑附加质量对锚索动力特性的影响,应用模态叠加法,引入Blevins升力模型和Vengugopal阻尼模型,计算了升力系数和无量纲模态振幅;通过疲劳累积损伤理论和S-N疲劳曲线,计算了锚索涡激疲劳损伤.研究结果表明:低质量比(m*m*>10)时,附加质量系数的影响可以忽略;锚索长细比大于100时,锚索涡激振动表现为多模态谐振;利用本文提出的方法可以较为准确地计算锚索涡激疲劳损伤,文中算例计算结果与物理实验结果比较发现,计算误差在5%的范围内.Abstract: In order to assess the vortex-induced fatigue damage on cables of submerged floating tunnel, the Blevins lift model and Vengugopal drag model were introduced to calculate the lift coefficient and dimensionless amplitude by modal superposition method, taking into account the influence of the additional mass on the dynamic characteristics of the cable in Hamilton's principle. Then, the vortex-induced fatigue damage of the cable was calculated by Fatigue cumulative damage theory and S-N fatigue curve. The results show that when the mass ratio is low (m*m*>10), however, the impact can be ignored. When the slenderness ratio of the cable is above 100, the vortex-induced vibration is in a multimodal resonance state. The vortex-induced fatigue damage on the cable can be calculated accurately by the proposed method, and the calculated results in a case study has an error of less than 5% compared with the experimental results.
-
Key words:
- submerged floating tunnel cable /
- vortex-induced vibration /
- fatigue damage /
- Matlab
-
DONNA A. Submerged floating tunnels-a concept whose time has arrived tunneling and underground[J]. Space Technology, 1997, 12(2): 317-336. GRIFFIN O M, VOTAW C W. The vortex street in the wake of a vibrating cylinder[J]. Journal of Fluid Mechanics, 1972, 51: 31-48. 郭海燕,傅强,娄敏. 海洋输液立管涡激振动响应及其疲劳寿命研究[J]. 工程力学,2005,22(4): 220-224. GUO Haiyan, FU Qiang, LOU Min. Vortex-induced vibrations and fatigue life of marine risers conveying flowing fluid[J]. Engineering Mechanics, 2005, 22(4): 220-224. 周巍伟. 深海悬链线立管涡激疲劳损伤预报研究[D]. 大连:大连理工大学,2009. BLEVINS R D. Flow-induced vibration[M]. 2nd ed. : Krieger Pub. Co., 2001: 27-102. GOPALKRISHNAN R. Vortex induced forces on oscillating bluff cylinders[D]. Cambridge: MIT, 1993. VENGUGOPAL M. Damping and response prediction of a flexible cylinder in a current[D]. Cambridge: MIT, 1996. 薛鸿祥,唐文勇,张圣坤. 非均匀来流下深海立管涡激振动响应研究[J]. 振动与冲击,2007,26(12): 10-13. XUE Hongxiang, TANG Wenyong, ZHANG Shengkun. Prediction of vortex-induced vibration of deep water riser in non-uniform current[J]. Journal of Vibration and Shock, 2007, 26(12): 10-13. KIM V J, LI L. Shear7 program theory manual. Cambridge: MIT, 2005. 胡毓仁,李典庆,陈伯真. 船舶与海洋工程结构疲劳可靠性分析[M]. 北京:北京航空航天大学出版社,2010: 29-69. 米彩盈,李芾. 基于谱载荷的高速列车转向架构架的疲劳强度[J]. 西南交通大学学报,2006,41(3): 381-386. MI Caiying, LI Fu. Atigue strength of bogie frame of high-speed train under spectrum load[J]. Journal of Southwest Jiaotong University, 2006, 41(3): 381-386. BAARHOLM G S, LARSEN C M, LIE H. Reduction of VIV using suppression devices: an empirical approach[J]. Marine Structures, 2005, 18(7/8): 489-510. 王一飞. 深海立管涡激振动疲劳损伤预报方法研究[D]. 上海:上海交通大学,2005. BAARHOLM G S, LARSEN C M, LIE H. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibration on risers[J]. Journal of Fluids and Structures, 2006, 22(1): 109-127.
点击查看大图
计量
- 文章访问数: 999
- HTML全文浏览量: 84
- PDF下载量: 469
- 被引次数: 0