• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑二阶效应梁柱瞬态分析的传递矩阵法

邵俊虎 向天宇 赵人达

邵俊虎, 向天宇, 赵人达. 考虑二阶效应梁柱瞬态分析的传递矩阵法[J]. 西南交通大学学报, 2014, 27(4): 631-636. doi: 10.3969/j.issn.0258-2724.2014.04.011
引用本文: 邵俊虎, 向天宇, 赵人达. 考虑二阶效应梁柱瞬态分析的传递矩阵法[J]. 西南交通大学学报, 2014, 27(4): 631-636. doi: 10.3969/j.issn.0258-2724.2014.04.011
SHAO Junhu, XIANG Tianyu, ZHAO Renda. Transfer Matrix Method of Beam-Column Transient Analysis Considering Second-Order Effect[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 631-636. doi: 10.3969/j.issn.0258-2724.2014.04.011
Citation: SHAO Junhu, XIANG Tianyu, ZHAO Renda. Transfer Matrix Method of Beam-Column Transient Analysis Considering Second-Order Effect[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 631-636. doi: 10.3969/j.issn.0258-2724.2014.04.011

考虑二阶效应梁柱瞬态分析的传递矩阵法

doi: 10.3969/j.issn.0258-2724.2014.04.011
基金项目: 

国家自然科学基金资助项目(51178395)

教育部博士点基金资助项目(20110184120010)

详细信息
    通讯作者:

    向天宇(1972- ),男,副教授,博士,研究方向为混凝土桥梁结构行为及随机分析,电话:13018204466,E-mail:tyxiang@home.swjtu.edu.cn

Transfer Matrix Method of Beam-Column Transient Analysis Considering Second-Order Effect

  • 摘要: 压弯构件承受较大轴力时,其表现出的明显的二阶效应直接影响结构刚度及动力特性,为计算计及二阶效应的梁柱结构的瞬态响应,提出了一种传递矩阵方法.该方法采用Newmark-β法,对考虑二阶效应的Euler-Bernoulli梁的动力偏微分方程进行时域离散,将其变换为常微分方程,并利用常数变易法对微分方程进行求解,得到位移增量在连续空间内的解析解.结合传递矩阵法的基本原理,推导了离散时间瞬态分析的增量传递矩阵格式,给出了计及二阶效应的梁柱结构瞬态响应的计算方法.算例计算结果表明,在计算精度相同的情况下,所提出的方法的计算效率是ANSYS的3.57倍,并可方便地对移动荷载作用下结构的动力响应进行求解.

     

  • 刘庆潭,倪国荣. 结构分析中的传递矩阵法[M]. 北京:中国铁道出版社,1997: 1-2.
    刘庆潭,赵淳,杨朝晖,等. 基于传递矩阵法分析考虑自重的变截面高墩稳定性[J]. 南华大学学报:自然科学版,2009,23(4): 92-101. LIU Qingtan, ZHAO Chun, YANG Zhaohui, et al. Analysis of transfer matrix method by considering the self-stability of variable cross-section high-pier[J]. Journal of University of South China: Science and Technology, 2009, 23(4): 92-101.
    刘庆潭,单立平. 复杂变截面压杆屈曲载荷计算的传递矩阵法[J]. 农业机械学报,2002,33(3): 106-109. LIU Qingtan, SHAN Liping. The transfer matrix method for calculation of buckling load of a compressed bar with complex variable sections[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(3): 106-109.
    刘庆潭,倪国荣. 压杆稳定性和横向自由振动计算的传递矩阵法[J]. 长沙铁道学院学报,1994,12(4): 87-95. LIU Qingtan, NI Guorong. The method of transfer matrix of stability and transfer free vibration for compressed bar[J]. Journal of Changsha Railway University, 1994, 12(4): 87-95.
    刘庆潭,倪国荣. 具有弹性支座及弹性地基的梁弯曲自由振动的传递矩阵法求解[J]. 长沙铁道学院学报,1994,12(1): 95-103. LIU Qingtan, NI Guorong. The solution of transfer matrix of bending free vibration for beam with elastic supports and elastic foundation[J]. Journal of Changsha Railway University, 1994, 12(1): 95-103.
    李雅萍,刘庆潭. 多跨弹性支座圆弧梁计算的传递矩阵法[J]. 中国铁道科学,2005,26(3): 48-52. LI Yaping, LIU Qingtan. The transfer matrix method for calculating circular beam with several elastic supports[J]. China Railway Science, 2005, 26(3): 48-52.
    向天宇,郑建军,周欣竹. 变截面圆拱强迫振动的传递矩阵算法[J]. 土木工程学报,2000,33(1): 46-50. XIANG Tianyu, ZHENG Jiangjun, ZHOU Xinzhu. Transfer matrix algorithm for force vibration of circular arches with variable cross-section[J]. China Civil Engineering Journal, 2000, 33(1): 46-50.
    XIANG Tianyu, ZHAO Renda. Dynamic interaction analysis of vehicle-bridge system using transfer matrix method[J]. Structural Engineering and Mechanics, 2005, 20(1): 1-11.
    XIANG Tianyu, ZHAO Renda, XU Tengfei. Reliability evaluation of vehicle bridge dynamic interaction[J]. Journal of Structural Engineering, 2007, 133(8): 1092-1099.
    何斌,陈树辉. 连续梁瞬态振动离散时间精细传递矩阵法[J]. 振动与冲击,2008,27(4): 4-8. HE Bin, CHEN Shuhui. Discrete-time precise transfer matrix method for transient vibration analysis of a continuous beam[J]. Journal of Vibration and Shock, 2008, 27(4): 4-8.
    孙建鹏,李青宁. 大跨桥梁地震反应的频域精细传递矩阵法[J]. 工程力学,2010,27(12): 8-13. SUN Jianpeng, LI Qingning. Precise transfer matrix method for seismic response analysis of the long-span bridges in frenquency domain[J]. Engineering Mechanics, 2010, 27(12): 8-13.
    薛惠钰. 计算变剖面梁稳态强迫振动的精确传递矩阵法[J]. 苏州大学学报:自然科学版,2001,17(3): 39-47. XUE Huiyu. Exact transfer matrix method for computing stable forced vibration of changeable cross-section beams[J]. Journal of Suzhou University: Natural Science, 2001, 17(3): 39-47.
    王佳,张宏生,陆念力. 计及二阶效应的梁杆系统动力响应分析方法研究[J]. 工程力学,2012,29(7): 275-282. WANG Jia, ZHANG Hongsheng, LU Nianli. The study of dynamic response analysis of beam-rod system considering second-order effects[J]. Engineering Mechanics, 2012, 29(7): 275-282.
    CLOUGH R W, PENZIEN J. Dynamics of structures[M]. New York: Computers & Structures, Inc., 2003: 121-123.
  • 加载中
计量
  • 文章访问数:  899
  • HTML全文浏览量:  73
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-19
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回