Road System Optimum Equilibrium Model Based on Mean-Excess Travel Time
-
摘要: 为研究随机事件扰动下出行者的择路行为对交通分配的影响,同时考虑供需条件的随机变化,以期望-超额出行时间为出行者择路依据,利用边际成本收费原理,推导了边际成本收费值计算公式,建立用等价变分不等式表示的系统最优交通分配模型,并利用自适应投影收缩算法进行求解.算例表明:当OD需求系数为1.0、路段能力退化系数为0.5时,路径1边际成本收费值分别比使用期望出行时间和出行时间预算为择路依据时增加了11.27%和3.58%;当出行时间可靠度为0.9时,路径1边际成本收费值分别比使用期望出行时间和出行时间预算作为择路依据时增加了20.22%和4.30%.Abstract: In order to study the effects on traffic assignment of travelers' route choice behaviors under random perturbations, the mean-excess travel time (METT) was assumed to describe travelers' route choice criteria. According to the theory of marginal cost pricing, the calculation formula for marginal cost pricing was derived under stochastic supply and demand. Then, a traffic assignment system equilibrium model was built and formulated as an equivalent variational inequality,and a self-adaptive projection and contraction method was used to solve the model. The results of numerical experiments show that when the ratio of origin-destination (OD) demand coefficient was 1.0 and the ratio of degradation of link capacity was 0.5, the marginal cost toll of route 1, compared with those by use of mean travel time and travel time budget to choose paths, was increased by 11.27% and 3.58%, respectively. When the reliability of travel time was 0.9, the marginal cost toll of route 1 were found to be 20.22% and 4.30% higher than those using the mean travel time and travel time budget as a basis for route choice, respectively.
-
张小宁. 交通网络拥挤收费原理[M]. 合肥:合肥工业大学出版社, 2009: 20-37. WALTERS A A. The theory and measurement of private and social cost of highway congestion[J]. Econometrica, 1961, 29(4): 676-699. DAFERMOS S C. Toll patterns for multiclass-user transportation networks[J]. Transportation Sciences, 1973, 7(3): 211-223. SMITH M J. The marginal cost taxation of a transportation network[J]. Transportation Research B, 1979, 13(3): 237-242. SMALL K A. Special issue: congestion pricing[J]. Transportation, 1992, 19: 287-291. 刘海旭, 蒲云. 基于行程质量的随机用户平衡分配模型[J]. 中国公路学报, 2004, 17(4): 93-95, 118. LIU Haixu, PU Yun. Stochastic user equilibrium assignment model based on travel trait[J]. China Journal of Highway and Transport, 2004, 17(4): 93-95, 118. LO H K, LUO X W, SIU B W Y. Degradable transport network: travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research Part B, 2006, 40(9): 792-806. 钟绍鹏, 邓卫. 基于路径运行时间可靠度的随机系统最优拥挤收费模型[J]. 系统工程理论与实践, 2010, 30(12): 2297-2308. ZHONG Shaopeng, DENG Wei. Path travel time reliability-based stochastic system optimum congestion pricing model[J]. System Engineering: Theory and Practice, 2010, 30(12): 2297-2308. CHEN A, ZHOU Z. The -reliable mean-excess traffic equilibrium model with stochastic travel times[J]. Transportation Research Part B, 2010, 44(4): 493-513. 吕彪, 蒲云, 刘海旭. 供需不确定条件下的预算-超额用户平衡模型[J]. 中国公路学报, 2012, 25(2): 113-120. LV Biao, PU Yun, LIU Haixu. Budget-excess user equilibrium model under uncertain supply and uncertain demand[J]. China Journal of Highway and Transport, 2012, 25(2): 113-120. 吕彪, 蒲云, 刘海旭. 多用户类型弹性需求随机期望-超额用户平衡模型[J]. 西南交通大学学报, 2012, 47(3): 516-525. LV Biao, PU Yun, LIU Haixu. Stochastic mean-excess user equilibrium model with multiple classes and elastic demand[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 516-525. ROCKAFELLAR R T, URYASEV S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3): 21-41. FENTON L F. The sum of log-normal probability distributions in scatter transmission systems[J]. IEEE Transactions on Communications Systems, 1960, 8(1): 57-67. 黄海军. 城市交通网络平衡分析:理论与实践[M]. 北京:人民交通出版社, 1994: 49-70. FACCHINEI F, PANG J S. Finite-dimensional variational inequalities and complementarity problems[M]. New York: Springer, 2003: 145-154. CHEN A, LO H K, YANG H. A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs[J]. European Journal of Operational Research, 2001, 135(1): 27-41.
点击查看大图
计量
- 文章访问数: 1078
- HTML全文浏览量: 59
- PDF下载量: 409
- 被引次数: 0