Probability Density Evolution Method of Nonlinear Random Vibration Analysis
-
摘要: 为深入探讨概率密度演化方法对于非线性随机振动分析的适用性,考察了随机地震动作用下一类硬弹簧Duffing振子的非线性响应,对概率密度演化方法与经典非线性随机振动分析进行了比较研究.结果表明:在弱非线性水平,概率密度演化方法与混沌多项式展开、Monte Carlo模拟的解答一致;在强非线性水平,数值求解误差、人为截断误差放大,概率密度演化方法与混沌多项式展开解答在Monte Carlo模拟解附近上下波动,表明概率密度演化方法与经典非线性随机振动解答在均方特征意义上是等价的.
-
关键词:
- 概率密度演化方法 /
- 混沌多项式展开 /
- Monte Carlo模拟 /
- 随机地震动 /
- Karhunen-Love分解
Abstract: In order to reveal the applicability of the probability density evolution method in nonlinear random vibration analysis, a comparative research of the probability density evolution method and the classical nonlinear random vibration analysis was carried out by investigating the nonlinear responses of a class of randomly base-driven Duffing oscillators using the probability density evolution method (PDEM), the adaptive polynomial chaos expansion (APCE) and the Monte Carlo simulation (MCS). A physically based stochastic ground motion model was employed, and represented by a Karhunen-Love expansion in the application of the APCE. This discrete representation can be viewed as a projection of the physical vector space into the Gaussian vector space. Numerical results reveal that the solution processes of the three approaches are identical to weakly nonlinear systems, while they are approximately identical to strongly nonlinear systems though errors resulted from numerical techniques and artificial truncations are amplified, indicating that the solution of the PDEM is equivalent to that of the classical nonlinear random vibration analysis in the mean-square sense. The PDEM, moreover, goes a step further than the classical nonlinear random vibration analysis since the probability density function of responses and the dynamic reliability of systems can be simultaneously provided by the PDEM. The other methods, however, need much more computational efforts to obtain high order statistics of responses. -
朱位秋. 随机振动[M]. 北京:科学出版社, 1992: 1-3. ROBERTS J B, SPANOS P D. Random vibration and statistical linearization[M]. West Sussex: John Wiley Sons, 1990: 1-16. 李杰, 陈建兵. 随机结构非线性动力响应的概率密度演化分析[J]. 力学学报, 2003, 35(6): 716-722. LI Jie, CHEN Jianbing. The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures[J]. Acta Mechanica Sinica, 2003, 35(6): 716-722. LI Jie, CHEN Jianbing. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 2008, 30: 65-77. LI Jie, CHEN Jianbing. Stochastic dynamics of struc-tures[M]. Singapore: John Wiley Sons, 2009: 191-284. 彭勇波, 陈建兵, 李杰. 广义密度演化方程与经典随机振动分析的比较研究[J]. 力学季刊, 2010, 31(2): 151-158. PENG Yongbo, CHEN Jianbing, LI Jie. Comparative study between generalized density evolution equation and classical random vibration analysis[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 151-158. GHANEM R, SPANOS P D. Stochastic finite elements: a spectral approach[M]. New York: Springer, 1991: 81-92. 安自辉, 李杰. 强震地面运动的频域物理模型研究[J]. 同济大学学报, 2008, 36(7): 869-873. AN Zihui, LI Jie. Physical model research on strong ground motion in frequency domain[J]. Journal of Tongji University: Natural Science, 2008, 36(7): 869-873. 李杰, 刘章军. 基于标准正交基的随机过程展开法[J]. 同济大学学报, 2006, 34(10): 1279-1283. LI Jie, LIU Zhangjun. Expansion method of stochastic processes based on normalized orthogonal bases[J]. Journal of Tongji University: Natural Science, 2006, 34(10): 1279-1283. 李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006, 26(5): 21-26. LI Jie, AI Xiaoqiu. Study on random model of earthquake ground motion based on physical process[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 21-26. CHEN Jianbing, LI Jie. Strategy for selecting representative points via tangent spheres in the probability density evolution method[J]. International Journal for Numerical Methods in Engineering, 2008, 74(13): 1988-2014. LI R, GHANEM R. Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration[J]. Probabilistic Engineering Mechanics, 1998, 13(2): 125-136. 期刊类型引用(6)
1. 向活跃,陈绪黎,李永乐. 基于ARMAX代理模型的车-桥耦合系统可靠性研究. 西南交通大学学报. 2022(06): 1217-1223+1232 . 本站查看
2. 刘付山,曾志平,王卫东. 轨道随机不平顺的谱表示-随机函数模拟及应用. 铁道学报. 2021(05): 121-127 . 百度学术
3. 刘付山,曾志平,郭无极,朱志辉. 考虑轮轨非线性接触的车辆-轨道-桥梁垂向耦合系统随机振动分析. 振动工程学报. 2020(01): 139-148 . 百度学术
4. 吕浩源,张辉,庞春雷,曹海霞. 基于固定垒高的双稳态系统参数调节方法. 空军工程大学学报(自然科学版). 2016(01): 83-89 . 百度学术
5. 谭平,刘良坤,李祥秀,张颖,周福霖. 基于首次穿越破坏的TMD体系频域可靠性分析. 西南交通大学学报. 2015(05): 886-890+941 . 本站查看
6. 陈洪月,刘烈北,马英,张瑜,谢苗. 随机激励下掘锚联合机纵向非线性振动特性分析. 中国机械工程. 2015(17): 2378-2384 . 百度学术
其他类型引用(5)
-

计量
- 文章访问数: 1133
- HTML全文浏览量: 110
- PDF下载量: 684
- 被引次数: 11