Substructure Normal Modes Selection Method for Component Mode Synthesis
-
摘要: 为了减少固定界面模态综合方法中保留的子结构主模态数,分别采用频率截断和有效模态质量截断两种方法进行截断,分析两种方法的适用性,最终得到适合结构低频动态特性计算的主模态截断方法.计算结果表明:频率截断法保留的主模态不到有效质模态量截断法的1/2,采用2~3倍的最高关心频率进行主模态截断,能保证结构低频动态特性计算具有较高的精度,所保留的主模态,更能反应子结构在关心频率范围内系统振动的变形模式;有效模态质量法不能判断各子结构间主模态对系统动态特性作用的相对大小,这使小尺寸高刚度的子结构保留多余的模态,其计算效率较低.Abstract: In order to reduce the normal mode number of retained substructures in the fixed interface component mode synthesis method, both frequency truncation and effective mode mass truncation methods were used for selection of component normal modes. By comparative analysis of the applicability of the two methods, the suitable normal mode truncation method for calculating structural low frequency dynamic characteristics was obtained. The computation results show that the normal modes of substructures retained by the frequency truncation method was 1/2 less than that by the effective mode mass truncation method. When computing complex structure low frequency vibration characteristics, setting the normal mode cutoff frequency to 2-3 times the upper frequency limit is sufficient to ensure high accuracy and efficiency, and the normal modes retained by the frequency truncation method can reflect better the substructure deformation caused by system low-frequency vibration. In contrast, the effective mode mass method cannot estimate the relative contribution of normal modes between substructures to the system low-frequency vibration characteristics; therefore, its truncation results may contain many redundant modes from substructures of small size and large stiffness.
-
Key words:
- component mode synthesis /
- substructure /
- vibration /
- frequency /
- effective mode mass
-
BAMPTON M, CRAIG R. Coupling of substructures for dynamic analysis[J]. AIAA Journal, 1968, 6(7):1313-1319. 殷学纲, 陈淮, 蹇开林. 结构振动分析的子结构方法[M]. 北京:中国铁道出版社, 1991: 145-258. MATHIEU H, DANIEL N, ALAIN C. Optimal component mode synthesis for medium frequency problem[J]. International Journal for Numerical Methods in Engineering, 2011, 86: 301-315. HINKE L, DOHNAL F, MACE B. Component mode synthesis as a framework for uncertainty analysis[J]. Journal of Sound and Vibration, 2009, 324(1): 161-178. MASSON G, AIT B, COGAN S. Component mode synthesis (CMS) based on an enriched ritz approach for efficient structural optimization[J]. Journal of Sound and Vibration, 2006, 296(4): 845-860. LIU M H, ZHENG G T. Improved component-mode synthesis for nonclassically damped systems[J]. AIAA Journal, 2008, 46(5): 1160-1168. LI H, LI G. Component mode synthesis approaches for quantum mechanical electrostatic analysis of nanoscale devices[J]. Journal of Computational Electronics, 2011, 17: 1-14. ADAM B, AVTABILE P. A reduced order, test verified component mode synthesis approach for system modeling applications[J].Mechanical Systems and Signal Processing, 2010, 24: 904-921. 宋攀, 董兴建, 孟光. 实验模态综合法若干问题的研究[J]. 振动与冲击, 2011, 30(9): 174-177. SONG Pan, DONG Xingjian, MENG Guang. Some problems regarding experimental modal synthesis method[J]. Journal of Vibration and Shock, 2011, 30(9): 174-177. NICGORSKI D, AVTABILE P. Conditioning of FRF measurements for use with frequency based substructuring[J]. Mechanical Systems and Signal Processing, 2010, 24: 340-351. 应祖光, 叶淑琴, 金林. 基于固定界面子结构模态的频响函数精确综合法[J]. 振动与冲击, 2010, 29(3): 132-133. YING Zuguang, YE Shuqin, JIN Lin. Exact frequency-response-function synthesis method using interface-fixed substructure modes[J].Journal of Vibration and Shock, 2010, 29(3): 132-133. ZHANG Geng, Component-based and parametric reduced-order modeling methods for vibration analysis of complex structures[D]. Ann Arbor: The University of Michigan, 2005. PARK K. Component-based vibration modeling methods for fast reanalysis and design of complex structures[D]. Ann Arbor: The University of Michigan, 2008. CLOUGH R W. 结构动力学[M]. 王光远, 译. 北京:科学出版社, 1981: 176-342. SIMON D M, COST T L. Selection of characteristic constraint modes for component mode synthesis using a modification of effective interface mass[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: American Inst. Aeronautics and Astronautics Inc., 2005: 6564-6583.
点击查看大图
计量
- 文章访问数: 1523
- HTML全文浏览量: 70
- PDF下载量: 920
- 被引次数: 0