Computational Modeling of Flows in Random Porous Media using Lattice Boltzmann Method
-
摘要: 为了探索多孔介质渗透性与孔隙率之间的关系,应用格子Boltzmann方法(LBM)以及无滑移流固边界条件,从孔隙尺度模拟了二维随机多孔介质中的流体流动.通过研究流量和压力梯度的关系,验证了格子Boltzmann方法模拟的Darcy定律.研究结果表明:在孔隙率较低(约小于0.3)的情况下,渗透性与孔隙率近似成指数关系变化,与前人的结果吻合.
-
关键词:
- 随机多孔介质 /
- 格子Boltzmann方法 /
- 孔隙尺度 /
- 孔隙率 /
- 渗透性
Abstract: In order to capture the relation between permeability and porosity, fluid flowing through two-dimensional random porous media was simulated at pore level by enforcing the no-slip condition on the fluid-solid interface. Fluid flow in two dimensional randomly generated porous media was simulated at the pore-scale using the lattice Boltzmann method (LBM). Random media were constructed by placing solid points with a random distribution. The Darcy's law was verified. The research result shows that the permeability varies exponentially with the porosity at low porosity less than about 0.3, being close agreement with the present result.-
Key words:
- random porous media /
- lattice Boltzmann method /
- pore-scale /
- porosity /
- permeability
-
郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2008: 201-203. KHOMAMI B, MORENO L D. Stability of viscoelastic flow around periodic arrays of cylinders[J]. Rheologica Acta, 1997, 36: 367-383. CLAGUE D, KANDHAI B, ZHANG R, et al. Hydraulic permeability of (un) bounded fibrous media using the lattice Boltzmann method[J]. Physical Review E, 2000, 61(1): 616-625. ZHONG W H, CURRIE I G, JAMES D F. Creeping flow through a model fibrous porous medium[J]. Experiments in Fluids, 2006, 40: 119-126. 柴振华, 郭照立, 施保昌. 利用多松弛格子Boltzmann方法预测多孔介质的渗透率[J]. 工程热物理学报, 2010, 31(1): 107-109. CHAI Zhenhua, GUO Zhaoli, SHI Baochang. Predic-tion of permeability in porous media with multi-relaxation-time lattice Boltzmann method[J]. Journal of Engineering thermophysics, 2010, 31(1): 107-109. BEAR J. Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, 1972: 106-113. FALCUCCI G, UBERTINI S, CHIAPPINI D. Modern lattice Boltzmann method for multiphase microflows[J]. IMA Journal of Applied Mathematics, 2011, 76(5): 712-725. GUO Z L, ZHAO T S. Lattice Boltzmann model for incompressible flows through porous media[J]. Physical Review E, 2002, 66(3): 301-304. SUKOP M C, THORNE D T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers[M]. Berlin: Springer, 2006: 2-3. 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009: 7-8. CHEN S, DOOLEN G. Lattice Boltzmann method for fluid flows[J]. Annual Reviews: Fluid Mechanics, 1998, 30(1): 329-364. HE X, LUO L. Lattice Boltzmann model for the incompressible Navier-Stokes equation[J]. Journal of Statistical Physics, 1997, 88(3/4): 927-944. 罗忠贤, 邱延峻, 禹华谦. 三维低雷诺数后台阶流动的Lattice Boltzmann Method模拟[J]. 四川大学学报:自然科学版, 2008, 45(5): 1194-1198. LUO Zhongxian, QIU Yanjun, YU Huaqian. Simulation of three dimensional low Reynolds number f low over a backward facing step using lattice Boltzmann method[J]. Journal of Sichuan University: Natural Science Edition, 2008, 45(5): 1194-1198. NABOVATI A, SOUSA A C M. Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method[J]. Journal of Engineering Science and Technology, 2007, 2(3): 226-237. ARIEL N S, JENS H. Evaluation of pressure boundary conditions for permeability calculations using the lattice-Boltzmann method[J]. Advances in Applied Mathematics and Mechanics, 2010, 2(5): 685-700. HAN Yanhui, CUNDALL P A. Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media[J]. International Journal for Numerical Methods in Fluids, 2011, 67(11): 1720-1734. BOEK E S, VENTUROLI M. Lattice Boltzmann studies of fluid flow in porous media with realistic rock geometries[J]. Computers and Mathematics with Applications, 2010, 59: 2305-2314. KUTAY M E, AYDILEK A H, MASAD E. Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials[J]. Computers and Geotechnics, 2006, 33: 381-395.
点击查看大图
计量
- 文章访问数: 921
- HTML全文浏览量: 78
- PDF下载量: 712
- 被引次数: 0