基于EEMD样本熵的高速列车转向架故障特征提取
doi: 10.3969/j.issn.0258-2724.2014.01.005
Feature Extraction of High Speed Train Bogie Based on Ensemble Empirical Mode Decomposition and Sample Entropy
-
摘要: 为了监测高速列车转向架关键部件的工作状态,提出了采用聚合经验模态分解和样本熵信息测度理论相结合的方法提取信号特征.以转向架正常、空气弹簧失气、横向减振器故障和抗蛇行减振器故障4种典型工况下车体及转向架的振动信号为研究对象,将信号进行聚合经验模态分解,得到一系列成分简单的固有模态函数,分别计算样本熵值构成高维特征矢量,最后采用支持向量机进行故障状态的分类识别.实验结果表明,列车在200 km/h速度下,故障识别率可以达到88%,证明了该特征提取算法的有效性.Abstract: To monitor the working condition of key components of high speed train bogie in time, a novel method for feature extraction is proposed by combination of ensemble empirical mode decomposition (EEMD) and sample entropy theory. Vibration signals are obtained from train body and bogie under four typical working conditions, such as normal condition, air spring fault, lateral damper fault, and yaw damper fault. After EEMD, signals have been decomposed into a series of intrinsic mode functions (IMFs), and the sample entropies of these IMFs constitute a high dimensional characteristic vector. Finally, the support vector machine is used to identify the fault conditions based on the characteristic vector. The experimental result shows that the recognition rate is 88% at the speed of 200 km/h. Therefore, this feature extraction method is effective for high speed train bogie fault signals.
-
王新锐, 丁勇, 李国顺. 铁路货车可靠性试验方法及评价标准的研究[J]. 中国铁道科学, 2010, 31(1): 116-122. WANG Xinrui, DING Yong, LI Guoshun. Study on the reliability test method and evaluation specifications of railway freight car[J]. China Railway Science, 2010, 31(1): 116-122. 张兵. 列车关键部件安全监测理论与分析研究[D]. 成都:西南交通大学, 2008. 宁静, 朱肇昆. EMD和Cohen类结合抑制交叉项的时-频分析方法[J]. 西南交通大学学报, 2010, 45(3): 400-404. NING Jing, ZHU Zhaokun. Time-frequency presentation using empirical mode decomposition combined with cohen class to suppress crossterms[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 400-404. 蒲黔辉, 秦世强, 施洲, 等. 环境激励下钢筋混凝土拱桥模态参数识别[J]. 西南交通大学学报, 2012, 47(4): 539-545. PU Qianhui, QIN Shiqiang, SHI Zhou, et al. Modal parameter identification of reinforced concrete arch bridge under ambient excitation[J]. Journal of Southwest Jiaotong University, 2012, 47(4): 539-545. BIN G F, GAO J J, LI X J, et al. Early fault diagnosis of rotating machinery based on wavelet packets-Empirical mode decomposition feature extraction and neural network[J]. Mechanical Systems and Signal Processing, 2012, 27(1): 696-711. YUNLONG Z, PENG Z. Vibration fault diagnosis method of centrifugal pump based on emd complexity feature and least square support vector machine[J]. Energy Procedia, 2012, 17: 939-945. WANG K S, HEYNS P S. Application of computed order tracking, Vold Kalman filtering and EMD in rotating machine vibration[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 416-430. 唐宏宾, 吴运新, 滑广军, 等. 基于EMD包络谱分析的液压泵故障诊断方法[J]. 振动与冲击, 2012, 31(9): 44-48. TANG Hongbin, WU Yunxin, HUA Guangjun, et al. Fault diagnosis of pump using EMD and envelope spectrum analysis[J]. Journal of Vibration and Shock, 2012, 31(9): 44-48. HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for non linear non-stationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454: 903-995. 刘义艳, 贺栓海, 巨永锋, 等. 基于EEMD和SVR的单自由度结构状态趋势预测[J]. 振动与冲击, 2012, 31(5): 60-64. LIU Yiyan, HE Shuanhai, JUN Yongfeng, et al. Trend prediction for a single-degree of freedom structure's state based on EEMD and SVR[J]. Journal of Vibration and Shock, 2012, 31(5): 60-64. VOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2631-2653. 赵晓华, 许士丽, 荣建, 等. 基于ROC曲线的驾驶疲劳脑电样本熵判定阈值研究[J]. 西南交通大学学报, 2013, 48(1): 178-183. ZHAO Xiaohua, XU Shili, RONG Jian, et al. Discriminating threshold of driving fatigue based on the electroencephalography sample entropy by receiver operating characteristic curve analysis[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 178-183. 康艳, 蔡焕杰, 宋松柏. 水文系统复杂性模型研究及应用[J]. 水力发电学报, 2013, 32(1): 5-10. KANG Yan, CAI Huanjie, SONG Songbai. Study and application of complexity model for hydrological system[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 5-10. AN X, JIANG D, LI S, et al. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine[J]. Energy, 2011, 36(9): 5508-5520. LEI Yaguo, HE Zhengjia, ZI Yanyang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6): 7334-7341.
点击查看大图
计量
- 文章访问数: 1304
- HTML全文浏览量: 87
- PDF下载量: 677
- 被引次数: 0