• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

微尺度下气体在过渡区内流动的格子Boltzmann模拟

刘加利 张继业 张卫华

刘加利, 张继业, 张卫华. 微尺度下气体在过渡区内流动的格子Boltzmann模拟[J]. 西南交通大学学报, 2013, 26(4): 731-737. doi: 10.3969/j.issn.0258-2724.2013.04.021
引用本文: 刘加利, 张继业, 张卫华. 微尺度下气体在过渡区内流动的格子Boltzmann模拟[J]. 西南交通大学学报, 2013, 26(4): 731-737. doi: 10.3969/j.issn.0258-2724.2013.04.021
LIU Jiali, ZHANG Jiye, ZHANG Weihua. Lattice Boltzmann Simulation of Micro-scale Gas Flows in the Transitional Regime[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 731-737. doi: 10.3969/j.issn.0258-2724.2013.04.021
Citation: LIU Jiali, ZHANG Jiye, ZHANG Weihua. Lattice Boltzmann Simulation of Micro-scale Gas Flows in the Transitional Regime[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 731-737. doi: 10.3969/j.issn.0258-2724.2013.04.021

微尺度下气体在过渡区内流动的格子Boltzmann模拟

doi: 10.3969/j.issn.0258-2724.2013.04.021
基金项目: 

国家自然科学基金资助项目(50823004)

"十一五"国家科技支撑计划资助项目(2009BAG12A01-C12)

铁道部科技研究开发计划资助项目(2008J013)

Lattice Boltzmann Simulation of Micro-scale Gas Flows in the Transitional Regime

  • 摘要: 为研究微尺度下气体在过渡区内的流动特性,基于气体动理学及Knudsen层效应理论,推导了Knudsen数与无量纲松弛时间的关系;应用Succi的边界处理方法和广义二阶滑移边界条件,推导了壁面滑移速度和反弹比例系数的计算公式,建立了适用于过渡区微尺度气体流动的格子Boltzmann模型,并应用该模型对过渡区内微尺度Poiseuille流动进行模拟.结果表明,当稀薄参数取1.64时,计算得到的无量纲速度剖面在整个过渡区与Karniadakis给出的无量纲速度剖面吻合较好,无量纲速度分布在过渡区基本上保持为抛物线形状,边界上的无量纲滑移速度随着Knudsen数的增加而增大,中心线上的无量纲速度随着Knudsen数的增加而减小.

     

  • 祝兵,宋随弟,谭长建. 三维波浪作用下大直径圆柱绕流的数值模拟[J]. 西南交通大学学报,2012,47(2): 224-229. ZHU Bing, SONG Suidi, TAN Changjian. Numerical simulation for diffraction around large-diameter circular cylinder subjected to three-dimension wave[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 224-229.
    OHWADA T, SONE T, AOKI K. Numerical analysis of the Poiseuille and thermal transpiration flows and a rarefied gas between two parallel plates[J]. Physics of Fluids A, 1989, 1(12): 2042-2049.
    ABDOU M A. Chapman-enskog-maximum entropy method on time-dependent neutron transport equation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101(2): 210-225.
    KUN X. Numerical hydrodynamics from gas kinetic theory[D]. New York: Columbia University, 1993.
    ARKILIC E B, SCHMIDT M A, BREUER K S. Gaseous slip flow in long microchannels[J]. Journal of Microelectromechanical Systems, 1997, 62(2): 167-178.
    BESKOK A. Simulation and models for gas flows in microg eometries[D]. Princeton: Princeton University, 1996.
    BIRD G A. Recent advances and current challenges for DSMC[J]. Computers and Mathematics with Applications, 1998, 35(1/2): 1-14.
    FAN J, SHEN C. Statistical simulation of low-speed rarefied gas flows[J]. Journal of Computational Physics, 2001, 167(2): 393-412.
    CAI C P, BOYD I D, FAN J, et al. Direct simulation methods for low-speed micro-channel flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3): 368-378.
    NIE X, DOOLEN G D, CHEN S. Lattice-Boltzmann simulations of fluid flows in MEMS[J]. Journal of Statistical Physics, 2002, 107(1): 279-289.
    LIM C Y, SHU C, NIU X D, et al. Application of lattice Boltzmann method to simulate microchannel flows[J]. Physics of Fluids, 2002, 14(7): 2299-2308.
    SHEN Q, TIAN D B, XIE C, et al. Examination of the LBM in simulation of micro-channel flow in transitional regime[J]. Microscale Thermophysical Engineering, 2004, 8(4): 423-432.
    ZHANG Y, QIN R, EMERSON D R. Lattice Boltzmann simulation of rarefied gas flows in microchannels[J]. Physical Review E, 2005, 71(4): 047702-1-047702-5.
    LEE T, LIN C L. Rarefaction and compressibility effects of the lattice Boltzmann equation method in a gas microchannel[J]. Physical Review E, 2005, 71(4): 046706-1-046706-10.
    GUO Z L, ZHAO T S, SHI Y. Physical symmetry,spatial accuracy,and relaxation timeof the lattice Boltzmann equation for microgas flows[J]. Journal of Applied Physics, 2006, 99(7): 074903-1-074903-8.
    ZHANG Y H, GU X J, BARBER R W, et al. Capturing Knudsen layer phenomena usinga lattice Boltzmann model[J]. Physical Review E, 2006, 74(4): 046704-1-046704-4.
    ZHANG Y H, GU X J, BARBER R W, et al. Modelling thermal flow in the transitionregime using a lattice Boltzmann approach[J]. Europhysics Letters, 2007, 77(3): 30003-1-30003-5.
    GUO Z L, ZHANG C G, SHI B C. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flows[J]. Physical Review E, 2008, 77(3): 036707-1-036707-12.
    QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysis Letters, 1992, 17(6): 479-484.
    GUO Z L, ZHENG C G, SHI B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E, 2002, 65(4): 046308-1-046308-6.
    BESKOK A, KARNIADAKIS G E. A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophys Engineering, 1999, 3(1): 43-77.
    VASILIS K, MICHALIS A N, KALARAKIS E D, et al. Rarefaction effects on gas viscosity in the Knudsen transition regime[J]. Microfluid Nanofluid, 2010, 9(4/5): 847-853.
    SUCCI S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneouscatalysis[J]. Physieal Review Letters, 2002, 89(6): 064502-1-064502-4.
    GUO Z L, SHI B C, ZHAO T S, et al. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating mircoscale gas flows[J]. Physical Review E, 2007, 76(5): 056704-1-056704-5.
    KARNIADAKIS G E, BESKOK A. Micro flows fundamental and simulation[M]. New York: Springer-Verlag, 2002: 90-110.
  • 加载中
计量
  • 文章访问数:  808
  • HTML全文浏览量:  62
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-02
  • 刊出日期:  2013-08-25

目录

    /

    返回文章
    返回