公路收费站车辆跟踪及抓拍算法研究与系统实现
doi: 10.3969/j.issn.0258-2724.2013.02.025
Video-Based Vehicle Tracking and Capturing System for Expressway Tollgates
-
摘要: 为保障公路收费站对车辆抓拍和车流统计的抗干扰能力,以静止单孔摄像机获取的检票口车道视频作为研究对象,提出了一种高效的易于扩展的抓拍判断系统框架.在分析常见运动检测方法优劣的基础上,从实时性和鲁棒性考虑,采用基于运动历史图像的改进的帧差法,以提高运动检测的灵敏度;为缓解服务器的计算压力,提出了一种高效的车辆矩形区域快速定位算法,并在此基础上定义了基于时间和空间变化的规则,以排除摄影机前人和杆臂运动对镜头的遮挡,最终构成了抓拍判断系统框架.此外,就多路车道在不同光照下并行地进行了实时抓拍实验,结果显示,在总时长5.5 h的测试样例中,车辆计数平均准确度达87.8%,证明该框架可显著减弱抬杆、落杆的遮挡以及光照变化的影响,提高抓拍的精度.Abstract: In order to reduce the noise impacts in front of the camera and improve the vehicle capturing precision in expressway tollgate scenes, an efficient and flexible judgment framework for vehicle capture was proposed. Specifically, through the analyses of the common motion detection methods, an improved frame difference approach based on motion history images was applied to the framework to increase the motion detection sensitivity. To relieve the calculation complexity, a fast detection algorithm for searching vehicle rectangular region was given. Furthermore, the spatio-temporal rules for vehicle capture judgment were defined, as a result, the judgment framework was formed. In addition, parallel vehicle capturing experiments were conducted on multiple lanes under varied illumination in real time. The experiment result shows that using the proposed framework, the average precision for a 5.5 h test sequence is up to 87.8%, and it is able to resist vehicle and bar movement noises and luminance variation to improve the vehicle capturing precision.
-
GUPTE S, MASOUD O, MARTIN R F K, et al. Detection and classification of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47. MORRIS B T, TRIVEDI M M. A survey of vision-based trajectory learning and analysis for surveillance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127. KHAMMARI A, NASHASHIBI F, ABRAMSON Y, et al. Vehicle detection combining gradient analysis and AdaBoost classification[C]//Proc. of the IEEE Conference on Intelligent Transportation Systems. Vienna: IEEE, 2005: 66-71. Van LEEUWEN M B, GROEN F C A. Vehicle detection with a mobile camera: spotting midrange, distant, and passing cars[J]. IEEE Robotics & Automation Magazine, 2005, 12(1): 37-43. HSIEH J W, YU S H, CHEN Y S, et al. Automatic traffic surveillance system for vehicle tracking and classification[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(2): 175-187. BAS E, TEKALP M, SALMAN F S. Automatic vehicle counting from video for traffic flow analysis[C]//Proc. of the IEEE Intelligent Vehicles Symposium. Istanbul: IEEE, 2007: 392-397. XIE Lei, ZHU Guangxi, WANG Yuqi, et al. Real-time vehicles tracking based on kalman filter in a video-based ITS[C]//Proc. of IEEE Conf. on Communications, Circuits and Systems. Hongkong: IEEE, 2005, 2: 883-886. 曾艳,于濂. 一种新的道路交通背景提取算法及研究[J]. 中国图象图形学报,2008,13(3): 593-599. ZENG Yan, YU Lian. A new background subtraction method for on road traffic[J]. Journal of Image and Graphics, 2008, 13(3): 593-599. SHI Peijun, JONES E G, ZHU Qiuming. Median model for background subtraction in intelligent transportation system[C]//Proc. of SPIE, Imaging Processing: Algorithms and Systems Ⅲ. San Jose: SPIE, 2004, 5298: 168-176. 张天瑜. 基于改进型中值滤波算法的图像去噪[J]. 长春工业大学学报,2009,30(1): 49-52. ZHANG Tianyu. Image denoising based on improved median filter[J]. Journal of Changchun University of Technology, 2009, 30(1): 49-52. 董付国,原达,王金鹏. 中值滤波快速算法的进一步思考[J]. 计算机工程与应用,2007,43(26): 48-49. DONG Fuguo, YUAN Da, WANG Jinpeng. Study on fast algorithm of median filtering[J]. Computer Engineering and Applications, 2007, 43(26): 48-49. YUAN Shiqiang, TAN Yonghong. The solutions of equation-based noise detector for an adaptive median filter[J]. Pattern Recognition, 2006, 39(11): 2252-2257. RICHARD A P. A new algorithm for image noise reduction using mathematical morphology[J]. IEEE Transactions on Image Processing, 1995, 4(3): 554-568. 屈桢深,于萌萌,姜永林,等. 用小波模历史图像的运动车辆视频检测[J]. 西南交通大学学报,2012,47(3): 89-95. QU Zhenshen, YU Mengmeng, JIANG Yonglin, et al. Vision-based detection of moving vehicles using wavelet modulus history images[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 89-95.
点击查看大图
计量
- 文章访问数: 989
- HTML全文浏览量: 67
- PDF下载量: 371
- 被引次数: 0