新型交叉式静音钢轨的理论与试验研究
doi: 10.3969/j.issn.0258-2724.2013.02.016
Theoretical Analysis and Experimental Investigation on Cross-Legged Silent Rail
-
摘要: 为降低轮轨噪音,提出了一种新型交叉式静音钢轨.与传统的静音钢轨不同,其在钢轨和阻尼层之间增加了一层扩展层,且扩展层与约束层交错布置.采用有限元法对该结构进行了优化设计,根据优化结果(扩展层宜用厚1 mm的铝材,阻尼层宜用IPN型阻尼材料,约束层宜用厚2 mm的钢材)制作实物并进行了试验测试.测试结果表明:在垂向和横向激励下,该交叉式静音钢轨振动持续的时间仅为标准钢轨的1/5,噪声声辐射声压级分别比标准钢轨降低10.4和13.2 dB.Abstract: In order to reduce wheel-rail noises, a cross-legged silent rail was designed. Unlike the traditional silent rail, an extension layer is added between rail and the damping layer, moreover, the extension layer and the constraining layer are interlaced mutually. The structure was optimized using the finite element method. Based on the optimized results that aluminum material with a thickness of 1 mm should be taken as the expansion layer, IPN damping material as the damping layer and 2 mm thick steel as the constraining layer, a prototype of the cross-legged silent rail was made and tested in laboratory. The tested results show that vibration duration time of the cross-legged silent rail is only 1/5 of the standard rail, and compared with the standard rail, its radiation sound pressure level decreases by 10.4 and 13.2 dB respectively at vertical excitation and lateral excitation.
-
Key words:
- wheel-rail noise /
- damping /
- vibration /
- cross-legged silent rail
-
雷晓燕,圣小珍. 铁路交通噪声与振动[M]. 北京:科学出版社,2004: 7-59. MAUCLAIRE B. Noise and vibration from high-speed trains[M]. London: Thomas Telford, 2001: 3-19. DITTRICH M G, ZHANG X. The harmonoise imagine model for traction noise of powered railway vehicles[J]. Journal of Sound and Vibration, 2006, 293(3): 986-994. REMINGTON P J. Wheel/rail noise, part Ⅰ: charac-terization of the wheel/rail dynamic system[J]. Journal of Sound and Vibration, 1976, 46(3): 359-379. NELSON J T. Wheel/rail noise control manual[M]. Washington: National Academy Press, 1997: 5-21. REMINGTON P J. Wheel/rail noise, part IV: rolling noise[J]. Journal of Sound and Vibration, 1976, 46(3): 419-436. HEMSWORTH B. Recent developments in wheel/rail noise research[J]. Journal of Sound Vibration, 1979, 66(3): 297-310. LETOURNEAUX F, GUERRAND S, POISSON F. Assessment of the acoustical comfort in high-speed trains at the SNCF: integration of subjective parameters[J]. Journal of Sound and Vibration, 2000, 231(3): 839-846. GUCCIA L. Le confort acoustique des voyageurs[J]. Revue Générale des Chemins de Fer, 1999, 49(7): 5-10. 赵洪伦,许小强. 弹性车轮减噪声学特性研究[J] .铁道学报,2001,23(6): 26-30. ZHAO Honglun, XU Xiaoqiang. Study on noise reduction properties of resilient wheels[J]. Journal of the China Railway Society, 2001, 23(6): 26-30. GRY L. Dynamic modeling of railway track based on wave propagation[J]. Journal of Sound and Vibration, 1996, 195(3): 477-505. JONES C, HARDY A. Bogie shrouds and low track-side barriers for the control of railway vehicle rolling noise[J]. Journal of Sound and Vibration, 1996, 193(1): 427-431. HEMSWORTH B. Rapporteur's report, session 4: propagation of railway noise; effect of topography; barrier design[J]. Journal of Sound and Vibration, 1977, 51(3): 399-401. OERTLI J. The STAIRRS project, work package 1: a cost-effectiveness analysis of railway noise reduction on a European scale[J]. Journal of Sound and Vibration, 2003, 267(3): 431-437. HAO M, RAO M D, SCHABUS M H. Optimum design of multiple-constraint-layered systems for vibration control[J]. AIAA Journal, 2004, 42(12): 2448-2461. LIU W. Experiment and analytic estimation of damping treatments in engineering structures[D]. Lawrence, Kansas: The University of Kansas, 2005: 113-159. LEE D H. Optimal placement of constrained-layer damping for reduction of interior noise[J]. Noise and Vibration Bulletin, 2008, 46(1): 75-83.
点击查看大图
计量
- 文章访问数: 1198
- HTML全文浏览量: 62
- PDF下载量: 448
- 被引次数: 0