基于多音激励的Volterra频域核非参数辨识方法
doi: 10.3969/j.issn.0258-2724.2013.02.010
Method of Identifying Volterra Frequency-Domain Kernels Based on Stimulus of Multi-tone Signal
-
摘要: 为解决Volterra频域核辨识困难的问题,探讨了多音信号激励下Volterra频域核的输出性质,提出了一种基于多音激励的Volterra频域核的非参数辨识方法.该方法选择具有合适频率基的多音信号作为测试激励信号,使各阶核的输出频率成分具有唯一性,进而利用Vandermode法使各阶核的输出分离.推导出了Volterra频域核的辨识公式,并进行了理论和仿真分析.理论分析和仿真结果表明:该方法可准确地辨识出任一阶Volterra频域核,绝对误差达到10-4 V数量级,克服了传统辨识方法无法准确辨识及辨识结果仅限于前3阶Volterra频域核的缺点,具有精度高、可操作性强的特点.
-
关键词:
- Volterra级数 /
- 非线性系统辨识 /
- 广义频域响应函数(GFRF) /
- 多音信号 /
- Vandermode法
Abstract: In order to solve the problem of difficultly identifying Volterra frequency-domain kernels, the output properties of Volterra frequency-domain kernels stimulated by multi-tone signal were investigated, and a novel non-parametric method to identify Volterra frequency-domain kernels was proposed based on multi-tone stimulus. With this method, a multi-tone signal with a proper frequency basis is selected as the test stimulus signal to make each kernel put out unique frequency components, further the output of each kernel is separated by the Vandermode method. The formula to identify Volterra frequency-domain kernels was derived, and theoretical and simulation analyses were carried out. The results indicate that any order Volterra frequency-domain kernel can be precisely identified by the proposed method, and the order of magnitude of the absolute error is 10-4 V. The proposed method overcomes the defects of the conventional methods, i.e., they are unable to correctly identify Volterra frequency-domain kernels and the identification results are limited to the first three orders, and it has a high precision and is easy to operate. -
RUGH W J. Nonlinear system theory[M]. The Jonhs Hopkins University Press, 1981: 3-20. PENG Zekai, LANG Zhiqiang, BILLING S A. Resonances and resonant frequencies for a class of nonlinear system[J]. Journal of Sound and Vibration, 2007, 300(3): 993-1014. 马红光,韩崇昭,王国华,等. 雷达引信视频放大器的GFRF辨识模型及其误差分析[J]. 探测与控制学报,2004,26(3): 50-54. MA Hongguang, HAN Chongzhao, WANG Guohua, et al. The GFRF identification model of radar video frequency amplifier and its error analysis[J]. Journal of Detection and Control, 2004, 26(3): 50-54. 马红光,韩崇昭,孔祥玉,等. 基于电路仿真的接收机中频放大器的GFRF模型[J]. 系统仿真学报,2004,16(6): 1143-1146. MA Hongguang, HAN Chongzhao, KONG Xiangyu, et al. The GFRF identification model of radar fuze receiver[J]. Journal of System Simulation, 2004, 16(6): 1143-1146. 马红光,韩崇昭,王国华,等. 基于EDA仿真的中频放大器GFRF模型[J]. 计算机仿真,2004,21(7): 22-25. MA Hongguang, HAN Chongzhao, WANG Guohua, et al. GFRF identification model of IF amplifier based on EDA simulation[J]. Computer Simulation, 2004, 21(7): 22-25. LIU Haiying. Classification of stably dissipative 3D Lotka-Volterra system and their necessary and sufficient condition for being stably dissipative[J]. Journal of Modern Transportaion, 2008, 16(3): 298-302. LANG Zhiqiang, BILLING S A. Output frequency characteristics of nonlinear system[J]. International Journal of Control, 1996, 64(6): 1049-1067. CHUA L O, NG C Y. Frequency domain analysis of nonlinear systems: general theory[J]. Electronic Circuit and Systems, 1979, 3(4): 165-185. BEDROSIAN E, RICE S O. The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs[J]. Proceedings of the IEEE, 1971, 59(12): 1688-1707. LI L M, BILLINGS S A. Analysis of nonlinear oscillators using Volterra series in the frequency domain[J]. Journal of Sound and Vibration, 2011, 330(2): 337-355. CHATTERJEE A, VYAS N S. Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing[J]. Journal of Sound and Vibration, 2003, 268(4): 657-678. BILLING S A, TSANG K M. Spectral analysis for nonlinear system, part I: parametric non-linear spectral analysis[J]. Mechanical Systems and Signal Processing, 1989, 3(4): 319-339. BILLING S A, JONES J C. Mapping nonlinear integro-differential equations into the frequency domain[J]. International Journal of Control, 1990, 52(4): 863-879. JONES J C, BILLING S A. A recursive algorithm for the computing the frequency response of a class of nonlinear difference equation models[J]. International Journal of Control, 1989, 50(5): 1925-1940. JONES J C. Simplified computation of Volterra frequency response functions of non-linear system[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1452-1468. LI L M, BILLINGS S A. Estimation of generalized frequency response functions for quadratically and cubically nonlinear systems[J]. Journal of Sound and Vibration, 2011, 330(3): 461-470. 张家良,曹建福,高峰. 大型装备传动系统非线性频谱特征提取与故障诊断[J]. 控制与决策,2012,27(1): 135-138. ZHANG Jialiang, CAO Jianfu, GAO Feng. Feature extraction and fault diagnosis of large-scale equipment transmission system based on nonlinear frequency spectrum[J]. Control and Decision, 2012, 27(1): 135-138. BOYD S, TANG Y S, CHUA L O. Measuring Volterra kernel[J]. IEEE Transactions on Circuits and Systems, 1983, 30(8): 571-577. CHUA L O, LIAO Youlin. Measuring Volterra kernel (Ⅱ)[J]. International Journal of Circuit Theory and Applications, 1989, 17(2): 151-190. 殷时蓉. 基于Volterra级数和神经网络的非线性电路故障诊断研究[D]. 成都:电子科技大学,2007: 53-54. 韩海涛,马红光,韩琨,等. 关于Volterra频域核辨识的多音激励信号设计[J]. 工程设计学报,2012,19(2): 123-127. 曹建福,韩崇昭,方洋旺. 非线性系统理论及应用[M]. 西安:西安交通大学出版社,2006: 128-140.
点击查看大图
计量
- 文章访问数: 1048
- HTML全文浏览量: 58
- PDF下载量: 302
- 被引次数: 0