Temperature Field of Catenary for Electrified Railway during Online Anti-icing
-
摘要: 接触网覆冰严重影响电气化铁路安全运营,为确保牵引供电的可靠性,提出了一种基于静止无功发生装置的接触网在线防冰方案.针对该方案建立了在线防冰时接触网系统的动态热平衡方程,并通过分别对比铁路运输行业标准TB/T 2809—2005和实验测试数据进行了验证.在此基础上,分析了防冰系统运行后接触网系统的动态温度变化和温度场分布,并探讨了机车速度和负载电流对温度场分布的影响.分析结果表明,环境温度为-4 ℃,目标温度为2 ℃时,吊弦及其线夹处温差可达5.3 ℃,可能成为最薄弱环节.Abstract: Accidents of icing on catenary have great impacts on normal operation of electrical railway. In order to guarantee traction power supply, an online anti-icing technology for catenary was proposed based on the static var generator (SVG). Heat balance equations for catenary were built, and solved results were compared with test results and data provided by the TB/T 2809-2005 to prove the correctness of the technology. The temperature fields of catenary during running of the online anti-icing system were calculated, and the factors influencing temperature distribution, such as train velocity and load current, were analyzed. The analyzed result shows that when ambient temperature is -4 ℃ and target temperature is 2 ℃, maximum temperature difference of droppers and clamps will reach to 5.3 ℃, so droppers and clamps may be weakest.
-
Key words:
- online anti-icing /
- heat balance /
- temperature field /
- catenary
-
赵成运,郑良华,田春光,等. 66 kV架空输电线路温度场的数值研究[J]. 电网技术,2007,31(增刊2): 34-36.ZHAO Chengyun, ZHENG Lianghua, TIAN Chunguang, et al. Numerical study on temperature field of 66 kV overhead transmission line[J]. Power System Technology, 2007, 31(Sup.2): 34-36. FU Ping, FARZANEH M, BOUCHARD G. Two-dimensional modelling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): 132-146. IEEE Power Engineering Society. IEEE Std 738TM-2006. IEEE standard for calculating the current-temperature of bare overhead conductors[S]. New York: IEEE, 2007. FARZANEH M. 电网的大气覆冰[M]. 黄新波,等译. 北京:中国电力出版社,2010: 57-60. 蒋兴良,易辉. 输电线路覆冰及防护[M]. 北京:中国电力出版社, 2002: 69-70. 王大兴. 电流融冰过程中导线表面温度特性及其影响因素的研究. 重庆:重庆大学,2010. 中华人民共和国铁道部. TB/T 3111—2005 电气化铁道用铜及铜合金绞线[S]. 北京:中国铁道出版社,2005. MIDYA S, BORMANN D, THOTTAPPILLIL R. Pantograph arcing in electrified railways: mechanism and influence of various parameters, part Ⅱ: with AC traction power supply[J]. IEEE Transactions on Power Delivery, 2009, 24(12): 1939-1950. 郭凤仪,马同立,陈忠华,等. 不同载流条件下滑动电接触特性[J]. 电工技术学报,2009,24(12): 18-23. GUO Fengyi, MA Tongli, CHEN Zhonghua, et al. Characteristics of thesliding electric contact under different currents[J]. Transactions of China Electro-technical Society, 2009, 24(12): 18-23. BLACK W Z, REHBERG R L. Simplified model for steady state and real-time ampacity of overhead conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(10): 2942-2953. 中华人民共和国铁道部. TB/T 2809—2005 电气化铁道用铜及铜合金接触线[S]. 北京:中国铁道出版社, 2005. 吴积钦. 受电弓-接触网系统电接触特性研究. 成都:西南交通大学,2009. OCOLEANU C F, POPA I, MANOLEA G. Temperature investigation in contact pantograph: AC contact line[J]. International Journal of Circuits, System and Signal Processing, 2009, 3(3): 154-163. 杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006: 134. 蒋先国. 电气化铁道接触网零部件设计与制造[M]. 北京:中国铁道出版社,2009: 14-15. 浦广益. ANSYS Workbench12基础教程与实例详解[M]. 北京:水利水电出版社,2010: 30.
点击查看大图
计量
- 文章访问数: 1293
- HTML全文浏览量: 81
- PDF下载量: 319
- 被引次数: 0