外激励作用下亚音速二维粘弹性壁板系统的混沌运动
doi: 10.3969/j.issn.0258-2724.2013.02.005
Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow
-
摘要: 为了研究壁板在亚音速气流和外激扰联合作用下的非线性运动特性,基于Hamilton原理,建立了外激励作用下亚音速粘弹性壁板的非线性运动方程,并采用Galerkin方法将其离散为常微分方程组,研究了系统的平衡点及其稳定性.利用Melnikov方法得到了壁板出现混沌运动时系统参数所满足的临界条件,分析了外激励幅值、频率及气流来流速度之间的临界关系,并与系统混沌运动的数值模拟结果进行了对比.结果表明:当无量纲动压值超过64.42时,壁板系统平衡点的个数及其稳定性均会发生改变;使用Melnikov方法确定的混沌运动临界参数与数值模拟结果相符,该方法可用于判定混沌运动是否发生.
-
关键词:
- 亚音速流 /
- 壁板 /
- 混沌 /
- Melnikov方法
Abstract: In order to study the nonlinear dynamics of a panel subjected to external excitation in subsonic flow, the nonlinear governing motion equations of a two-dimensional forced subsonic viscoelastic panel were established by Hamilton theory, and discretized to a series of ordinary differential equations using the Galerkin method. Then, the system equilibrium points and their stability were analyzed, and Melnikov's method was used to obtain the critical values of system parameters for chaos appearance. The critical relations between the external excitation amplitude, frequency, and flow velocity were discussed and compared with the results of chaotic motions by numerical simulation. The results show that the number of equilibrium points and their stability will change after the dimensionless dynamic pressure exceeds 64.42, and the critical parameters determined by Melnikov's method match up to those obtained by numerical simulation. Therefore, the proposed method can be used to judge whether the chaotic motion happens or not.-
Key words:
- subsonic flow /
- thin panel /
- chaos /
- Melnikovs method
-
SCHETZ J A. Aerodynamics of high-speed trains[J]. Ann. Rev. Fluid. Mech, 2001, 23: 371-414. JERPMR C R. A train for the 21st century [J]. Rail International, 1994, 25(4): 2-8. 李鹏,杨翊仁,鲁丽. 外激励作用下亚音速二维壁板的分叉及响应研究[J].力学学报,2011,43(4): 746-754. LI Peng, YANG Yiren, LU Li. Bifurcation and responses analysis of two-dimensional panel with external excitation in subsonic flow[J]. Chinese Journal of Theoretical and Application Mechanics, 2011, 43(4): 746-754. 谢建华. 一类单自由度强迫振动系统的混沌运动[J]. 西南交通大学学报,1998,33(1): 72-76. XIE J H. Chaotic motions in a forced vibration system of single-degree-of-freedom[J]. Journal of Southwest Jiaotong University, 1998, 33(1): 72-76. WIGGINS S. Introduction to applied nonlinear dynamical system and chaos[M]. New York: Springer-Verlag, 1990: 687-720. GUKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical system, and bifurcation of vector fields[M]. New York: Springer-Verlag, 1983: 180-212. CHEN D L, YANG Y R, FAN C G. Nonlinear flutter of a two-dimension thin plate subjected to aerodynamic heating by differential quadrature method[J]. Acta Mechanica Sinica, 2008, 24(1): 45-50. 张伟,霍拳忠. 参数激励和强迫激励联合作用下非线性振动的分叉[J]. 力学学报,1991,23(4): 464-474. ZHANG Wei, HUO Quanzhong. Bifurcation of nonlinear oscillation system under combined parametric and forcing excitation[J]. Acta Mechanica Sinica, 1991, 23(4): 464-474. WANG L, NI Q, HUANG Y Y. Bifurcations and chaos in forced cantilever system with impacts[J]. Journal of Sound and Vibration, 2006, 296: 1068-1078. KENFACK A. Bifurcation structure of two coupled periodically driven double-well Duffing oscillators[J]. Chaos, Solutons and Fractals, 2003, 15: 205-218. JING Z J, WANG R Q. Complex dynamics in Duffing system with two external forcings[J]. Chaos, Solitons and Fractals, 2005, 23: 399-411. 包日东,毕文军,闻邦椿. 两端固定输流管道混沌运动预测[J]. 振动与冲击,2008,27(6): 99-102. BAO Ridong, BI Wenjun, WEN Bangchun. Predicting chaotic motion of a two end-fixed fluid conveying pipe[J]. Journal of Vibration and Shock, 2008, 27(6): 99-102. BISPLINGHOFF R L, ASHLEY H, HALFMAN R L. Aeroelasticity[M]. Cambridge: Addison-Wesley Publishing Co. Inc., 1955: 285-326. DOWELL E H. Aeroelasticity of plates and shells[M]. Leyden: Noordhoff International Publishing, 1975: 51-55. LI P, YANG Y R, XU W, et al. On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation[J]. Archive of Applied Mechanics, 2012, 82(9): 1251-1267.
点击查看大图
计量
- 文章访问数: 1114
- HTML全文浏览量: 68
- PDF下载量: 428
- 被引次数: 0