• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

外激励作用下亚音速二维粘弹性壁板系统的混沌运动

李鹏 杨翊仁 鲁丽

李鹏, 杨翊仁, 鲁丽. 外激励作用下亚音速二维粘弹性壁板系统的混沌运动[J]. 西南交通大学学报, 2013, 26(2): 217-222. doi: 10.3969/j.issn.0258-2724.2013.02.005
引用本文: 李鹏, 杨翊仁, 鲁丽. 外激励作用下亚音速二维粘弹性壁板系统的混沌运动[J]. 西南交通大学学报, 2013, 26(2): 217-222. doi: 10.3969/j.issn.0258-2724.2013.02.005
LI Peng, YANG Yiren, LU Li. Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 217-222. doi: 10.3969/j.issn.0258-2724.2013.02.005
Citation: LI Peng, YANG Yiren, LU Li. Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 217-222. doi: 10.3969/j.issn.0258-2724.2013.02.005

外激励作用下亚音速二维粘弹性壁板系统的混沌运动

doi: 10.3969/j.issn.0258-2724.2013.02.005
基金项目: 

国家自然科学基金资助项目(10972185,10902103,11102170,11102172)

中央高校基本科研业务费专项资金资助项目(SWJTU11CX071,2682013XC026)项目

Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow

  • 摘要: 为了研究壁板在亚音速气流和外激扰联合作用下的非线性运动特性,基于Hamilton原理,建立了外激励作用下亚音速粘弹性壁板的非线性运动方程,并采用Galerkin方法将其离散为常微分方程组,研究了系统的平衡点及其稳定性.利用Melnikov方法得到了壁板出现混沌运动时系统参数所满足的临界条件,分析了外激励幅值、频率及气流来流速度之间的临界关系,并与系统混沌运动的数值模拟结果进行了对比.结果表明:当无量纲动压值超过64.42时,壁板系统平衡点的个数及其稳定性均会发生改变;使用Melnikov方法确定的混沌运动临界参数与数值模拟结果相符,该方法可用于判定混沌运动是否发生.

     

  • SCHETZ J A. Aerodynamics of high-speed trains[J]. Ann. Rev. Fluid. Mech, 2001, 23: 371-414.
    JERPMR C R. A train for the 21st century [J]. Rail International, 1994, 25(4): 2-8.
    李鹏,杨翊仁,鲁丽. 外激励作用下亚音速二维壁板的分叉及响应研究[J].力学学报,2011,43(4): 746-754. LI Peng, YANG Yiren, LU Li. Bifurcation and responses analysis of two-dimensional panel with external excitation in subsonic flow[J]. Chinese Journal of Theoretical and Application Mechanics, 2011, 43(4): 746-754.
    谢建华. 一类单自由度强迫振动系统的混沌运动[J]. 西南交通大学学报,1998,33(1): 72-76. XIE J H. Chaotic motions in a forced vibration system of single-degree-of-freedom[J]. Journal of Southwest Jiaotong University, 1998, 33(1): 72-76.
    WIGGINS S. Introduction to applied nonlinear dynamical system and chaos[M]. New York: Springer-Verlag, 1990: 687-720.
    GUKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical system, and bifurcation of vector fields[M]. New York: Springer-Verlag, 1983: 180-212.
    CHEN D L, YANG Y R, FAN C G. Nonlinear flutter of a two-dimension thin plate subjected to aerodynamic heating by differential quadrature method[J]. Acta Mechanica Sinica, 2008, 24(1): 45-50.
    张伟,霍拳忠. 参数激励和强迫激励联合作用下非线性振动的分叉[J]. 力学学报,1991,23(4): 464-474. ZHANG Wei, HUO Quanzhong. Bifurcation of nonlinear oscillation system under combined parametric and forcing excitation[J]. Acta Mechanica Sinica, 1991, 23(4): 464-474.
    WANG L, NI Q, HUANG Y Y. Bifurcations and chaos in forced cantilever system with impacts[J]. Journal of Sound and Vibration, 2006, 296: 1068-1078.
    KENFACK A. Bifurcation structure of two coupled periodically driven double-well Duffing oscillators[J]. Chaos, Solutons and Fractals, 2003, 15: 205-218.
    JING Z J, WANG R Q. Complex dynamics in Duffing system with two external forcings[J]. Chaos, Solitons and Fractals, 2005, 23: 399-411.
    包日东,毕文军,闻邦椿. 两端固定输流管道混沌运动预测[J]. 振动与冲击,2008,27(6): 99-102. BAO Ridong, BI Wenjun, WEN Bangchun. Predicting chaotic motion of a two end-fixed fluid conveying pipe[J]. Journal of Vibration and Shock, 2008, 27(6): 99-102.
    BISPLINGHOFF R L, ASHLEY H, HALFMAN R L. Aeroelasticity[M]. Cambridge: Addison-Wesley Publishing Co. Inc., 1955: 285-326.
    DOWELL E H. Aeroelasticity of plates and shells[M]. Leyden: Noordhoff International Publishing, 1975: 51-55.
    LI P, YANG Y R, XU W, et al. On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation[J]. Archive of Applied Mechanics, 2012, 82(9): 1251-1267.
  • 加载中
计量
  • 文章访问数:  1114
  • HTML全文浏览量:  68
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-21
  • 刊出日期:  2013-04-25

目录

    /

    返回文章
    返回