基于模糊神经网络的高速公路路面质量评价
doi: 10.3969/j.issn.0258-2724.2013.01.025
Quality Evaluation of Expressway Pavement Based on Fuzzy Neural Networks
-
摘要: 为提高高速公路沥青路面使用质量的评价精度,将T-S模糊理论与BP神经网络相结合,以高速公路沥青路面的路面状况指数、路面结构强度指数、道路行驶质量指数和路面抗滑性能指数4个检测指标作为输入变量,根据模糊推理规则构建路面质量评价的非线性映射关系,路面检测指标经过模糊神经网络的学习和训练,直至网络输出与期望输出的误差达到最小,去模糊化后得到各路段的精确评价结果,建立了路面使用质量的综合评价模型.用实际检测数据对该模型进行了验证,结果表明:该模型具有模糊系统的逻辑推理能力和神经网络的定量数据处理能力,通过本文方法仿真得到的路面质量的综合评价结果,与期望值的相对误差小于2.1%.Abstract: In order to improve the precision of highway asphalt pavement quality evaluation, a comprehensive evaluation model of pavement quality was built using Takagi-Sugeno (T-S) fuzzy theory combined with back propagation (BP) neural network. In this model, 4 indexes including expressway asphalt pavement condition index, pavement structure strength index, road riding quality index, and skid resistance index are taken as input variables; a nonlinear mapping relationship of the pavement quality evaluation system is established by fuzzy inference rules; pavement detection indicators undergo the fuzzy neural network learning and training, until the error between network output and the expected output reach a minimum value; after defuzzification, quantitative quality evaluation result of each pavement is obtained. In addition, the proposed method was verified by an example using the real measured data. The results show that the method has the logical reasoning ability of fuzzy system and the quantitative data processing ability of neural network. Compared to the expected values, the pavement quality comprehensive evaluation results simulated by the proposed method have a relative error of less than 2.1%.
-
Key words:
- expressway /
- fuzzy system /
- neural network /
- pavement quality evaluation
-
马士宾,薛文,王玲,等. 高速公路路面使用性能突变评价方法研究[J]. 公路,2006(11): 36-38. MA Shibin, XUE Wen, WANG Ling, et al. Expressway pavement performance evaluation method of mutation[J]. Highway, 2006(11): 36-38. TERZI S. Modeling the pavement serviceability ration of flexible highway pavement by artificial neural networks[J]. Construction and Building Materials, 2007(21): 590-593. 党奇志. 基于灰色理论的旧沥青混凝土路面使用性能综合评价方法[J]. 公路,2011(11): 207-209. DANG Qizhi. Based on the theory of gray system of old asphalt concrete pavement performance evaluation method[J]. Highway, 2011(11): 207-209. 张永清,贾双盈. 高等级公路沥青路面性能评价方法[J]. 长安大学学报:自然科学版,2005,25(2): 11-15. ZHANG Yongqing, JIA Shuangying. Evaluation method for asphalt pavement performance of freeway[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25(2): 11-15. 喻翔,毛敏,彭其渊. 高速公路路面使用性能评价的一种方法[J]. 公路交通科技,2005,22(12): 27-31. YU Xiang, MAO Min, PENG Qiyuan. A method for expressway pavement performance evaluation[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 27-31. AASHTO. Pavement management guide:executive summary report[R]. Washington D. C.:America Association of State Highway and Transportation Officials, 2001. 刘艳,康海贵,孙敏. 基于遗传算法的模糊优选神经网络路面性能评价模型[J]. 大连理工大学学报,2010,50(1): 117-122. LIU Yan, KANG Haigui, SUN Min. Genetic algorithm-based fuzzy optimization neural network model for pavement performance evaluation[J]. Journal of Dalian University of Technology, 2010, 50(1): 117-122. 熊辉,史其信,潘先榜. 路面管理理论与方法的研究进展及趋势[J]. 土木工程学报,2004,37(1): 65-69. XIONG Hui, SHI Qixin, PAN Xianbang. Research progress and trend of Pavement management[J]. China Civil Engineering Journal, 2004, 37(1): 65-69. 中华人民共和国交通部. JTJ 073.2—2001 公路沥青养护技术规范[S]. 北京:人民交通出版社,2001. JUANG C F, CHEN T M. Birdsong recognition using prediction-based recurrent neural fuzzy networks[J]. Neurocomputing, 2007, 71(1-3):121-130. DENG X S, WANG X Z. Incremental learning of dynamic fuzzy neural networks for accurate system modeling[J]. Fuzzy Sets and Systems, 2009, 160(7): 972-987. MASHINCHI M R, SELAMAT A. An improvement on genetic-based learing method for fuzzy artificial neural networks[J]. Applied Soft Computing, 2009, 9(4): 1208-1216. TAKAGI T, SNGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans. on System, Man and Cybernetics, 1986, 15(1): 116-132. 田景文,高美娟. 人工神经网络算法研究及应用[M]. 北京:北京理工大学出版社,2006: 158-161. 董长虹. Matlab神经网络与应用[M]. 2版.北京:国防工业出版社,2007: 66-71.
点击查看大图
计量
- 文章访问数: 1261
- HTML全文浏览量: 65
- PDF下载量: 268
- 被引次数: 0