• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

铁氧体磁瓦表面典型缺陷检测方法

蒋红海 李雪琴 刘培勇 殷国富

蒋红海, 李雪琴, 刘培勇, 殷国富. 铁氧体磁瓦表面典型缺陷检测方法[J]. 西南交通大学学报, 2013, 26(1): 129-134,140. doi: 10.3969/j.issn.0258-2724.2013.01.020
引用本文: 蒋红海, 李雪琴, 刘培勇, 殷国富. 铁氧体磁瓦表面典型缺陷检测方法[J]. 西南交通大学学报, 2013, 26(1): 129-134,140. doi: 10.3969/j.issn.0258-2724.2013.01.020
JIANG Honghai, LI Xueqin, LIU Peiyong, YIN Goufu. Detection Method of Typical Defects in Arc Ferrite Magnet Surface[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 129-134,140. doi: 10.3969/j.issn.0258-2724.2013.01.020
Citation: JIANG Honghai, LI Xueqin, LIU Peiyong, YIN Goufu. Detection Method of Typical Defects in Arc Ferrite Magnet Surface[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 129-134,140. doi: 10.3969/j.issn.0258-2724.2013.01.020

铁氧体磁瓦表面典型缺陷检测方法

doi: 10.3969/j.issn.0258-2724.2013.01.020
基金项目: 

国家科技支撑计划资助项目(2006BAF01A07)

四川省高新技术产业重大关键技术项目(2010GZ0051)

详细信息
    通讯作者:

    殷国富(1956-),男,教授,博士生导师,研究方向为计算机辅助设计与制造(CAD/CAPP/CAM),E-mail:gfyin@scu.edu.cn

Detection Method of Typical Defects in Arc Ferrite Magnet Surface

  • 摘要: 为解决人工磁瓦表面缺陷检测质量不稳定的问题,提出了一种自动检测磁瓦表面缺陷的方法.首先利用磁瓦轮廓长度、面积等几何特征及轮廓匹配的相似度作为特征向量,采用支持向量机进行初次分类;然后再利用对凸凹缺陷的分析,得到缺陷数量和面积作为特征向量,采用最小均方误差分类器进行二次分类;最后对上述2步结果做与运算,得出最终判断.实验表明本方法可以达到正确识别率约为91.80%,错误接受率约为0.75%,正确拒绝率约为14.00%.

     

  • 余永维,殷国富,蒋红海,等. 磁瓦表面图像的自适应形态学滤波缺陷提取方法[J]. 计算机辅助设计与图形学学报,2012,24(3): 351-356. YU Yongwei, YIN Guofu, JIANG Honghai, et al. Defect extraction method of arc magnet surface images based on adaptive morphological filtering[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3): 351-356.
    TSAI Duming, CHAO Shinmin. An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures[J]. Image and Vision Computing, 2005, 23(3): 325-338.
    ZHANG Xiang, KUHLEN K, KUHLENKÖTTER B. Automatic classification of defects on the product surface in grinding and polishing[J]. International Journal of Machine Tools & Manufacture, 2006, 46(1): 59-69.
    CHAPELLE O, HAFFNE P, VAPNIK V N. Support vector machines for histogram-based image classification[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1055-1064.
    SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    CHEUNG C F, HU K, JIANG X Q, et al. Characterization of surface defects in fast tool servo machining of microlens array using a pattern recognition and analysis method[J]. Measurement, 2010, 43(9): 1240-1249.
    CHIOU Y C, LI Weichen. Flaw detection of cylindrical surfaces in PU-packing by using machine vision technique[J]. Measurement, 2009, 42(7), 989-1000.
    ROSATI G, BOSCHETTI G, BIONDI A, et al. Real-time defect detection on highly reflective curved surfaces[J]. Optics and Lasers in Engineering, 2009, 47(3/4): 379-384.
    DEINIS A, FRED M, CHIRISTOPHE D, et al. Vision system for defect imaging, detection, and characterization on a specular surface of a 3D object[J]. Image and Vision Computing, 2002, 20(8): 569-580.
    FAN K C, CHEN S H, CHEN J Y, et al. Development of auto defect classification system on porosity powder metallurgy products[J]. NDT & E International, 2010, 43(6): 451-460.
    SUN T H, TAENG C C, CHEN M S. Electric contacts inspection using machine vision[J]. Image and Vision Computing, 2010, 28(6): 890-901.
    KULDEEP A, RAJIV S, ZHU Yijun, et al. Process knowledge based multi-class support vector classification (PK-MSVM) approach for surface defects in hot rolling[J]. Expert Systems with Applications, 2011, 38(6): 7251-7262.
    HOMMA K, TAKENAKA E I. An image processing method for feature extraction of space-occupying lesions[J]. Journal of Nuclear Medicine,1985, 26(12): 1472-1477.
    EMMANUEL J, CAND S, DEMANET L, et al. Fast discrete curvelet transforms[J]. Multiscale Modeling & Simulation, 2006, 5(3): 861-899.
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
  • 加载中
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  61
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-19
  • 刊出日期:  2013-02-25

目录

    /

    返回文章
    返回