民航运输航空器着陆阶段偏出跑道事件分析模型
doi: 10.3969/j.issn.0258-2724.2012.05.026
Analysis Model of Transport Aircraft Veering off Runway during Landing Phase
-
摘要: 为了克服故障树分析方法只能描述正常和故障两种状态的缺陷,利用故障树方法的逻辑分析优势,以及贝叶斯网络描述多态事件和计算概率的功能,建立了基于故障树和贝叶斯网络相融合的航空器着陆偏出跑道事件分析模型,提出了故障树与贝叶斯网络之间的转换算法求解该模型.根据1996—2010年中国民航着陆偏出跑道事件的数据,确定了着陆航空器偏出跑道的主要原因,并按重要程度进行了排序.研究结果表明:积水、反喷或减速板故障、复杂气象条件、驾驶术欠缺、前轮转弯卡阻、夜航或受灯光不利影响、对机组资源管理失效、积冰积雪是导致着陆偏出跑道的主要风险因素,其后验概率均大于0.3;应针对主要风险因素,制定针对性预防措施.Abstract: In order to overcome the flaws of traditional fault tree analysis which can only describe two states: normal or fault, a combined method based on fault tree (FT) and Bayesian Network (BN) for landing aircraft veering off runway analysis was put forward. The new method not only took the advantages of logical analysis of fault tree but also the function of the description of polymorphic events and probability calculation of Bayesian network. In addition, a transform algorithm from FT to BN was proposed to solve the model. Based on the data about aircraft veering off runway during landing phase of Civil Aviation Administration of China from 1996 to 2010, the key factors causing runway excursion landing accidents of aircrafts were determined and then ranked by their importance. The result indicates that standing water, dysfunction of thrust reverser or airbrake, complex weather conditions, deficiency of piloting technology, jammed nose wheel steering, night operation or adverse influence from lights, failure of crew resource management, accumulated ice or snow should be the key concerns whose posterior probability are greater than 0.3; and targeted preventive measures should be developed toward the major risky factors. The analysis result produced by the model is consistent with the fact.
-
Key words:
- runway excursion /
- veering off /
- fault tree analysis /
- Bayesian network
-
李小燕. 近十年全球商用喷气机冲出跑道事故统计分析[J]. 中国民用航空,2009(9): 37-39. LI Xiaoyan. Statistical analysis of global runway excursion accidents of commercial jets in the last decade[J]. China Civil Aviation, 2009(9): 37-39. 王浩锋,谢孜楠. 1997~2006年中国民航冲出偏出跑道/场外接地事故征候的统计分析研究[J]. 中国民航飞行学院学报,2008,19(3): 3-14. WANG Haofeng, XIE Zinan. Statistics and analysis of incident on China's commercial aircraft runway excursion and undershoot/overshoot from 1997 to 2006[J]. Journal of Civil Aviation Flight University of China, 2008, 19(3): 3-14. 汪磊,孙瑞山. CFIT事故中的人为因素[J]. 中国民航大学学报,2007,25(增刊1): 80-82. WANG Lei, SUN Ruishan. Human factors in CFIT accidents[J]. Journal of Civil Aviation University of China, 2007, 25(Sup.1): 80-82. 王兴隆,刘卫香. 基于故障树的空管自动化系统分析[J]. 航空计算技术,2009,39(3): 18-33. WANG Xinglong, LIU Weixiang. Research on air traffic control automatic system based on fault tree[J]. Aeronautical Computing Technique, 2009, 39(3): 18-33. 何晓薇. 基于故障树分析法的航空电子设备维护方案设计[J]. 航空维修与工程,2003(5): 34-35. HE Xiaowei. The design of maintaining scheme for avionics based on fault tree analysis[J]. Aviation Maintenance and Engineering, 2003(5): 34-35. 李焕良,杨承先,左洪福,等. 基于故障树分析法与虚拟仪器技术的工程装备电控系统故障诊断[J]. 中国工程机械学报,2007,5(3): 340-346. LI Huanliang, YANG Chengxian, ZUO Hongfu, et al. Fault diagnosis on electrical control systems of engineering equipments based on FTA and VI techniques[J]. Chinese Journal of Construction Machinery, 2007, 5(3): 340-346. 厉海涛,金光,周经伦,等. 贝叶斯网络推理算法综述[J]. 系统工程与电子技术,2008,30(5): 935-939. LI Haitao, JIN Guang, ZHOU Jinglun, et al. Survey of Bayesian network inference algorithms[J]. Systems Engineering and Electronics, 2008, 30(5): 935-939. 陈英武,高妍方. 贝叶斯网络扩展研究综述[J]. 控制与决策,2008,23(10): 1081-1086. CHEN Yingwu, GAO Yanfang. Survey of extended Bayesian networks[J]. Control and Decision, 2008, 23(10): 1081-1086. 汪元辉. 安全系统工程[M]. 天津:天津大学出版社,2003: 36-79. BOBBIO A, PORTINALE L, MINICHINO M, et al. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[J]. Reliability Engineering and System Safety, 2001, 71(3): 249-260. 傅军,贺炜,阎建国,等. 贝叶斯网络在柴油机动力装置故障诊断中的应用[J]. 上海海运学院学报,2001,22(3): 68-72. FU Jun, HE Wei, YAN Jianguo, et al. A study of fault diagnosis based on Bayesian networks[J]. Journal of Shanghai Maritime University, 2001, 22(3): 68-72. LIU Sha, SUN Ruishan, CUI Jing. Combined technique of fault tree analysis and bayesian network for risk assessment in air traffic management system//Progress in Safety Science and Technology, VOL VII, Part A. Beijing: Science Press USA Inc., 2008: 260-264. GILISSEN C F H A. Analysis of time-series gene expression data with dynamic Bayesian networks. Nijmegen: Radboud University Nijmegen, 2005. ZOU M, CONZEN S D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data[J]. Bioinformatics, 2005, 21(1): 71-79. GUI Xia, LIU Weifeng, HAN Wang, et al. Reconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithm[J]. Journal of Bionic Engineering, 2009, 6(1): 86-92.
点击查看大图
计量
- 文章访问数: 1054
- HTML全文浏览量: 62
- PDF下载量: 334
- 被引次数: 0