• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于加权核密度估计的自适应运动前景检测方法

蒋鹏 金炜东

蒋鹏, 金炜东. 基于加权核密度估计的自适应运动前景检测方法[J]. 西南交通大学学报, 2012, 25(5): 769-775. doi: 10.3969/j.issn.0258-2724.2012.05.007
引用本文: 蒋鹏, 金炜东. 基于加权核密度估计的自适应运动前景检测方法[J]. 西南交通大学学报, 2012, 25(5): 769-775. doi: 10.3969/j.issn.0258-2724.2012.05.007
JIANG Peng, JIN Weidong. Adaptive Foreground Detection Based on Weighted Kernel Density Estimation[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 769-775. doi: 10.3969/j.issn.0258-2724.2012.05.007
Citation: JIANG Peng, JIN Weidong. Adaptive Foreground Detection Based on Weighted Kernel Density Estimation[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 769-775. doi: 10.3969/j.issn.0258-2724.2012.05.007

基于加权核密度估计的自适应运动前景检测方法

doi: 10.3969/j.issn.0258-2724.2012.05.007
基金项目: 

国家自然科学基金资助项目(61134002)

中央高校基本科研业务费专项资金资助项目(SWJTU12CX027)

Adaptive Foreground Detection Based on Weighted Kernel Density Estimation

  • 摘要: 为解决监控视频背景初始化过程中前景干扰的问题,提出了一种基于加权核密度估计(KDE)的自适应运动前景检测方法.该方法对时间域变化稳定的像素值进行加权,并利用核密度估计构建背景模型,避免了背景初始化过程中前景的干扰.基于该背景模型,提出了一种新的阈值设定策略.该策略根据前景空间分布的连续性自适应获得前景阈值,填充前景中的"孔",并更新阈值.实验结果表明:即使场景中存在运动前景,该方法能够在多种场景下获得90%以上的查准率和查全率,其性能优于传统的背景差法.

     

  • FRIEDMAN N, RUSSELL S. Image segmentation in video sequences: a probabilistic approach//Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence. Providence: Morgan Kaufmann Publishers, 1997: 175-181.
    彭强,李华. 基于块直方图分析的视频背景提取方法[J]. 西南交通大学学报,2006,41(1): 48-53. PENG Qiang, LI Hua. Background extraction method based on block histogram analysis for video images[J]. Journal of Southwest Jiaotong University, 2006, 41(1): 48-53.
    侯志强,韩崇昭. 基于像素灰度归类的背景重构算法[J]. 软件学报,2005,16(9): 1568-1576. HOU Zhiqiang, HAN Chongzhao. A background reconstruction algorithm based on pixel intensity classification[J]. Journal of Software, 2005, 16(9): 1568-1576.
    LEE D S. Effective Gaussian mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
    CHAN A B, MAHADEVAN V. Generalized Stauffer Grimson background subtraction for dynamic scenes[J]. Machine Vision and Applications, 2011, 22(5): 751-766.
    ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J]. Proceedings of IEEE, 2002, 90(7): 1151-1163.
    MITTAL A, PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation//Proc. Int'l Conf. Computer Vision and Pattern Recognition. Washington: [s.n.], 2004: 302-309.
    KIM W, KIM C. Background subtraction for dynamic texture scenes using fuzzy color histograms[J]. IEEE Signal Processing Letters, 2012, 19(3): 127-130.
    MANDELLOS N A, KERAMITSOGLOU I. A background subtraction algorithm for detecting and tracking vehicles[J]. Expert Systems with Applications, 2011, 38(3): 1619-1631.
    SHEATHER S J, JONES M C. A reliable data-based bandwidth selection method for kernel density estimation[J]. Journal of the Royal Statistical Society Series B, 1991, 53(3): 683-690.
    蒋鹏,秦小麟. 复杂背景下的自适应前景分割算法[J]. 中国图象图形学报,2011,16(1): 37-43. JIANG Peng, QIN Xiaolin. Robust foreground detection with adaptive threshold estimation[J]. Journal of Image and Graphics, 2011, 16(1): 37-43.
    蒋鹏,秦小麟. 利用背景聚类的快速前景分割算法[J]. 中国图象图形学报,2010,15(12): 1790-1795. JIANG Peng, QIN Xiaolin. Foreground detection based on unsupervised background clustering[J]. Journal of Image and Graphics, 2010, 15(12): 1790-1795.
    MARIE R, POTELLE A, MOUADDIB E M. Dynamic background subtraction using moments//2011 18th IEEE International Conference on Image Processing (ICIP). Amiens: [s.n.], 2011: 2369-2372.
    WANG S C, SU Tefeng, LAI Shanghong. Detecting moving objects from dynamic background with shadow removal//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). [s.l.]: IEEE, 2011: 925-928.
    MADDALENA L, PETROSINO A. A self-organizing approach to background subtraction for visual surveillance applications[J]. IEEE Tran. Image Processing, 2008, 17(7): 1168-1177.
  • 加载中
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  71
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-07
  • 刊出日期:  2012-10-25

目录

    /

    返回文章
    返回