• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于个体最优位置的自适应变异扰动粒子群算法

刘志刚 曾嘉俊 韩志伟

刘志刚, 曾嘉俊, 韩志伟. 基于个体最优位置的自适应变异扰动粒子群算法[J]. 西南交通大学学报, 2012, 25(5): 761-768. doi: 10.3969/j.issn.0258-2724.2012.05.006
引用本文: 刘志刚, 曾嘉俊, 韩志伟. 基于个体最优位置的自适应变异扰动粒子群算法[J]. 西南交通大学学报, 2012, 25(5): 761-768. doi: 10.3969/j.issn.0258-2724.2012.05.006
LIU Zhigang, ZENG Jiajun, HAN Zhiwei. Adaptive Mutation Disturbance Particle Swarm Optimization Algorithm Based on Personal Best Position[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 761-768. doi: 10.3969/j.issn.0258-2724.2012.05.006
Citation: LIU Zhigang, ZENG Jiajun, HAN Zhiwei. Adaptive Mutation Disturbance Particle Swarm Optimization Algorithm Based on Personal Best Position[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 761-768. doi: 10.3969/j.issn.0258-2724.2012.05.006

基于个体最优位置的自适应变异扰动粒子群算法

doi: 10.3969/j.issn.0258-2724.2012.05.006
基金项目: 

国家自然科学基金资助项目(U1134205, 51007074)

教育部新世纪优秀人才支持计划资助项目(NECT-08-0825)

中央高校基本科研业务费专项资金资助项目(SWJTU11CX141)

Adaptive Mutation Disturbance Particle Swarm Optimization Algorithm Based on Personal Best Position

  • 摘要: 针对粒子群算法在寻优时容易陷入局部最优的不足,提出了一种基于个体最优位置的自适应变异扰动粒子群算法AMDPSO (adaptive mutation disturbance particle swarm optimization).该算法以粒子群算法为基础,加入扰动,当满足自适应条件时,粒子以个体最优位置为依据进行变异操作.将该算法运用于6个测试函数,并与惯性权重粒子群算法、收缩因子粒子群算法以及差分进化算法进行了比较,结果表明:AMDPSO能在寻优过程中让粒子跳出局部最优,保持种群多样性,具有更好的收敛速度和优化性能.

     

  • 袁曾任. 人工神经网络及其应用[M]. 北京:清华大学出版社,1999: 2-5.
    COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies//Proceedings of the 1st European Conference on Artificial Life. Cambridge: MIT Press, 1992: 134-142.
    KIRKPATRICK S, GELATT C D, Jr. VECHIM M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
    HOLLAND J H. Adaptation in natural artificial systems[M]. Cambridge: MIT Press, 1975: 17.
    STORN R, PRICE K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkley: International Computer Science Institute, 1995.
    KENNEDY J, EBETHART R C. Particle swam optimization//Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE Press, 1995: 1942-1948.
    CHEN Debao, ZHAO Chunxia. Particle swarm optimization with adaptive population size and its application[J]. Applied Soft Computing, 2009, 9(1): 39-48.
    RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
    DU Jiyong, ZHANG Fengming, HUANG Guorong, et al. A new initializing mechanism in particle swarm optimization //2011 IEEE International Conference on Computer Science and Automation Engineering(CSCA). Shanghai: IEEE Press, 2011, 4: 325-329.
    胡广浩,毛志忠,何大阔. 基于两阶段领导的多目标粒子群优化算法[J]. 控制与决策,2010,25(3): 404-415. HU Guanghao, MAO Zhizhong, HE Dakuo. Multi-objective PSO optimization algorithm based on two stages guided[J]. Control and Decision, 2010, 25(3): 404-415.
    曾嘉俊,刘志刚,黄元亮,等. 基于子区域的粒子群优化算法研究[J]. 计算机工程,2011,37(14): 205-208. ZENG Jiajun, LIU Zhigang, HUANG Yuanliang, et al. Research of particle swarm optimization algorithm based on sub-region[J]. Computer Engineering, 2011, 37(14): 205-208.
    迟玉红,孙富春,王维军,等. 基于空间缩放和吸引子的粒子群优化算法[J]. 计算机学报,2011,34(1): 115-130. CHI Yuhong, SUN Fuchun, WANG Weijun, et al. An improved particle swarm optimization algorithm with search space zoomed factor and attractor[J]. Chinese Journal of Computers, 2011, 34(1): 115-130.
    池元杰,方杰,魏鑫,等. 基于小生境和交叉选择算子的改进粒子群优化算法[J]. 系统仿真学报,2010,22(1): 111-114. CHI Yuanjie, FANG Jie, WEI Xin, et al. Improved particle swarm optimization algorithm based on niche, crossover and selection operators[J]. Journal of System Simulation, 2010, 22(1): 111-114.
    SUN Jun, FENG Bin,XU Wenbo. Particle swarm optimization with particles having quantum behavior//Congress Evolutionary Computation. Portland: IEEE Press, 2004, 1: 325-331.
    SHA Y D, HSU C Y. A hybrid particle swarm optimization for job shop scheduling problem[J]. Computers and Industrial Engineering, 2006, 51(4): 791-808.
    ZHOU Dawei, GAO Xiang, LIU Guohai, et al. Randomization in particle swarm optimization for global search ability[J]. Expert Systems with Applications, 2011, 38(12): 15356-15364.
    唐贤伦. 混沌粒子群优化算法理论及应用研究. 重庆:重庆大学,2007.
    刘东,冯全源,蒋启龙. 基于改进PSO算法的磁浮列车PID控制器参数优化[J]. 西南交通大学学报,2010,45(3): 405-410. LIU Dong, FENG Quanyuan, JIANG Qilong. Parameter optimization of maglev PID controller based on improved PSO algorithm[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 405-410.
    郭惠勇,王磊,李正良. 基于改进粒子群算法的两阶段损伤识别方法[J]. 西南交通大学学报,2011,46(6): 926-932. GUO Huiyong, WANG Lei, LI Zhengliang. Two-stage damage detection method based on improved particle swarm optimization algorithm[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 926-932.
    SHI Y, EBERHART R C. A modified particle swarm optimizer//Proceedings of the 1998 Conference of Evolutionary Computation. Anchorage: IEEE Press, 1998: 69-73.
    吕振肃,侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报,2004,32(3): 416-420. LÜ Zhensu, HOU Zhirong. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3): 416-420.
    CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transaction on Evolutionary Computation, 2002, 6(1): 58-73.
    付国江,王少梅,刘舒燕,等. 含边界变异的粒子群算法[J]. 武汉理工大学学报,2005,27(9): 101-103. FU Guojiang, WANG Shaomei, LIU Shuyan, et al. A PSO with bounded mutation operator[J]. Journal of Wuhan University of Technology, 2005, 27(9): 101-103.
    胡旺,李志蜀. 一种更简化而高效的粒子群优化算法[J]. 软件学报,2007,18(4): 861-868. HU Wang, LI Zhishu. A simpler and more effective particle swarm optimization algorithm[J]. Journal of Software, 2007, 18(4): 861-868.
  • 加载中
计量
  • 文章访问数:  1305
  • HTML全文浏览量:  84
  • PDF下载量:  642
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 刊出日期:  2012-10-25

目录

    /

    返回文章
    返回