基于区间概率偏好的随机格序群决策方法
doi: 10.3969/j.issn.0258-2724.2012.04.027
Random Lattice Order Group Decision-Making Based on Interval Probability Preferences
-
摘要: 为解决偏好优劣关系具有随机性,且随机事件的概率采用区间值描述的随机格序群体决策问题,提出了一种基于专家偏好服从某种区间概率分布的决策方法.将决策者对方案的偏好描述由优于、劣于、等价和不可比4种关系拓展为优于、劣于、等价、无法比较但有上确界、无法比较但有下确界、无法比较但既有上确界又有下确界、不可比7种偏好关系,并结合区间概率的概念、性质和区间数的运算规则,定义了格上偏好关系的概率分布.然后确定方案对偏好关系的概率最大化目标函数,结合优先原则和集结规则,将个人偏好集结成群体偏好.最后,通过案例给出该决策方法的具体步骤,说明了该方法的可行性.Abstract: To solve the random lattice order group decision-making problems where preference relations are random and probability of random events is described by interval values, a decision-making method based on the preferences of decision makers subject to an interval probability distribution is proposed. First, the preference relations are extended from four kinds (preference, inferior, indifference, and incomparability) to seven kinds (preference, inferior, indifference, incomparability, incomparability with a minimum upper bound, incomparability with a maximum lower bound, and incomparability with a minimum upper bound and a maximum lower bound). Second, the probability distribution of lattice order preference relations is defined on the basis of the concept and property of interval probability, and the operation rules of interval numbers. Third, the probability maximization objective function of preference relation of any pair of alternatives is established, and individual preferences are aggregated to group preferences according to priority rules and intersection rules. Finally, the steps of the group decision-making method are listed through a case study, and the feasibility and effectiveness of the method is validated.
-
Key words:
- group decision-making /
- random lattice order /
- interval probability /
- preference relation
-
CHUU S J. Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information[J]. Computers and Industrial Engineering, 2009, 57(3): 1033-1042. MA Liching. Visualizing preferences on spheres for group decisions based on multiplicative preference relations[J]. European Journal of Operational Research, 2010, 203(1): 176-184. CHEN Yenliang, CHENG Lichen. An approach to group ranking decisions in a dynamic environment[J]. Decision Support Systems,2010, 48(4): 622-634. HAHN E D. Judgmental consistency and consensus in stochastic multi-criteria decision making[J].Expert Systems with Applications, 2010, 37(5): 3784-3791. 郭耀煌,刘家诚,刘常青,等. 格序决策[M]. 上海:上海科学技术出版社,2003: 5-20. GONZLEZPACHN J, ROMERO C. Aggregation of partial ordinal rankings: An interval goal programming method[J]. Computers and Operations Research, 2001, 28(8): 827-834. GONZLEZPACHN J, RODRGUEZ-GALIANO M I, ROMERO C. Transitive approximation to pairwise comparison matrices by using interval goal programming[J]. Journal of Operational Research Society, 2003, 54(5): 532-538. JABEUR K, JEAN-MARC M. A collective choice method based on individual preferences relational systems[J]. European Journal of Operational Research, 2007, 177(3): 1549-1565. JABEUR K, JEAN-MARC M. An ordinal sorting method for group decision-making[J]. European Journal of Operational Research, 2007, 180(3): 1272-1289. JABEUR K, JEAN-MARC M, KHLIF S B. A distance-based collective preorder integrating the relative importance of the group's members[J]. Group Decision and Negotiation, 2004, 13(4): 327-349. COOK W D, KRESS M. A Multiple criteria decision model with ordinal preference data[J]. European Journal of Operational Research, 1991, 54(2):191-198. REBAI A, AOUNI B, MARTEL J M. A multi-attribute method for choosing among potential alternatives with ordinal evaluation[J]. European Journal of Operational Research, 2006, 174(1): 360-373. XU Zeshui. A method based on distance measure for interval-valued intuitionistic fuzzy group decision making[J]. Information Sciences, 2010, 180(1): 181-190. WANG Y M, YANG J B, XU D L. A preference aggregation method through the estimation of utility intervals[J]. Computers & Operations Research, 2005, 32(8): 2027-2049. RISTO L, PEKKA S. SMAA: stochastic multi-criteria acceptability analysis for group decision making[J]. Operational Research, 2001, 49(3): 444-454. 王坚强,龚岚. 基于集对分析的区间概率随机多准则决策方法[J]. 控制与决策,2009,24(12): 1877-1880. WANG Jianqiang, GONG Lan. Interval probability stochastic multi-criteria decision-making approach based on set pair analysis[J]. Control and Decision, 2009, 24(12): 1877-1880. 王坚强,周玲. 基于最大隶属大的区间概率灰色随机多准则决策方法[J]. 控制与决策,2010,25(4): 493-496. WANG Jianqiang, ZHOU Ling. Grey random multi-criteria decision-making approach based on maximum membership degree[J]. Control and Decision, 2010, 25(4): 493-496. 郭强,郭春香,郭耀煌. 基于格序偏好距离的群决策方法[J]. 系统工程与电子技术,2010, 32(2): 298-302. GUO Qiang, GUO Chunxiang, GUO Yaohuang. Method of group decision-making based on the distance of lattice order preferences[J]. Systems Engineering and Electronics, 2010, 32(2): 298-302. HALL W J, BLOCKLEY D I, John P Davis. Uncertain inference using interval probability Theory[J]. International Journal of Approximate Reasoning, 1998, 19(3): 247-264. WEICHSELBERGER K. The theory of interval-probability as a unifying concept for uncertainty[J]. International Journal of Approximate Reasoning, 2000, 24(2): 149-170. GUO Peijun, HIDEO T . Decision making with interval probabilities[J]. European Journal of Operational Research, 2010, 203(2): 444-454. FAN Zhiping, YUE Qi, FENG Bo, et al. An approach to group decision-making with uncertain preference ordinals[J]. Computers and Industrial Engineering, 2010, 58(1): 51-57. LODWICK W A, JAMISON K. David. Interval-valued probability in the analysis of problems containing a mixture of possibilistic, probabilistic, and interval uncertainty[J]. Fuzzy Sets and Systems, 2008, 159(21): 2845-2858. GRECO S, MOUSSEAU V, SLOWINSKI R. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions[J]. European Journal of Operational Research, 2008, 191(2): 416-436.
点击查看大图
计量
- 文章访问数: 1181
- HTML全文浏览量: 60
- PDF下载量: 352
- 被引次数: 0