Web Services Evaluation Model Based on Variant Time Utility
-
摘要: 针对KNN(k-nearest neighbor)方法在服务评价过程中存在的时效量化、评价窗口宽度以及反馈控制等问题,提出了具有差异时效的服务评价模型(WSEM-VTU).在WSEM-VTU中,采用系统动力学方法研究复杂时效量化方法,以获得差异时效量化结果;基于复杂时效量化方法得到的结果,自适应计算评价窗口宽度;根据评价统计特征,设计恶意评价反馈控制策略.通过实验,将WSEM-VTU与现有评价模型WSEM-E及WSEM-KNN进行比较,结果表明:WSEM-VTU的平均误差为0.877,比WSEM-E和WSEM-KNN分别降低了1.020和0.135;引入反馈控制策略后,WSEM-VTU出现恶意评价的情况平均降低67%.Abstract: To solve the problems of the KNN (k-nearest neighbor) method in the quantification of time utility, the width of evaluation windows and the control of feedback, a web services evaluation model with variant time utility (WSEM-VTU) was proposed. In WSEM-VTU, the system dynamics is used to investigate the complex quantification method of the time utility to achieve the variant time utility. From the results of the quantification method, the width of the evaluation windows is adaptively calculated. In terms of the statistics of feedbacks, a feedback control strategy is involved. By means of experiments, WSEM-VTU was compared with the current evaluation models, WSEM-E and WSEM-KNN. The experimental results show that the average error of WSEM-VTU is 0.877, being lower 1.020 and 0.135 than the errors of WSEM-E and WSEM-KNN respectively. With the feedback control strategy, malicious ratings are reduced by an average of 67%.
-
Key words:
- web services /
- variant time utility /
- services evaluation /
- feedback control
-
蔡海尼,文俊浩,姬楷. 基于SOA的协同设计网络性能优化[J]. 西南交通大学学报,2010,45(4): 603-608. CAI Haini, WEN Junhao, JI Kai. Performance optimization of collaborative design network based on service-oriented architecture[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 603-608. 郑向宏,李院春,李增智. 面向语用Web服务的QoS评价模型研究[J]. 电子科技大学学报,2007, 36(6): 1477-1480, 1484. ZHENG Xianghong, LI Yuanchun, LI Zengzhi. Research on pragmatic web oriented qos evaluation model[J]. Journal of University of Electronic Science and Technology of China, 2007, 36(6): 1477-1480, 1484. 邵凌霜,周立,赵俊峰,等. 一种Web Service的服务质量预测方法[J]. 软件学报,2009,20(8): 2062-2073. SHAO Lingshuang, ZHOU Li, ZHAO Junfeng, et al. An extensible management framework for web service QoS[J]. Journal of Software, 2009, 20(8): 2062-2073. 杨文军,李涓子,王克宏. 领域自适应的Web服务评价模型[J]. 计算机学报,2005,28(4): 514-523. YANG Wenjun, LI Juanzi, WANG Kehong. Domain-adaptive service evaluation model[J]. Chinese Journal of Computers, 2005, 28(4): 514-523. 叶涛,朱学峰,李向阳,等. 基于改进k-最近邻回归算法的软测量建模[J]. 自动化学报,2007,33(9): 996-999. YE Tao, ZHU Xuefeng, LI Xiangyang, et al. Soft sensor modeling based on a modified k-nearest neighbor regression algorithm[J]. Acta Automatica Sinica, 2007, 33(9): 996-999. SEGARAN T. Programming collective intelligence[M]. 南京:东南大学出版社,2008: 167-196. 李小勇,桂小林. 动态信任预测的认知模型[J]. 软件学报,2010,21(1): 163-176. LI Xiaoyong, GUI Xiaolin. Cognitive model of dynamic trust forecasting[J]. Journal of Software, 2010, 21(1): 163-176. MENG Linghang, XU Xiaohao, GENG Zengxian. A time-optimal aircraft-following model based on pontryagin's minimum principle[J]. Journal of Modern Transportation, 2010, 19(4): 268-273. KOYCHEV I, SCHWAB I. Adaptation to drifting user's interests//Proceedings of ECML 2000 Workshop: Machine Learning in New Information Age. Barcelona: Springer Press, 2000: 39-46. KUKAR M, LJUBLJANA S. Drifting concepts as hidden factors in clinical studies//Artificial Intelligence in Medicine 9th Conference on Artificial Intelligence in Medicine in Europe(AIME 2003). Protaras: IEEE Press, 2003: 355-364. 于洪,李转运. 基于遗忘曲线的协同过滤推荐算法[J]. 南京大学学报:自然科学版,2010,46(5): 520-527. YU Hong, LI Zhuanyun. A collaborative filtering recommendation algorithm based on forgetting curve[J]. Journal of Nanjing University: Natural Sciences, 2010, 46 (5): 520-527. CHATTERJEEA A, SIARRYB P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871. ZLIOBAITE I. Learning under concept drift: an overview. . http: //arxiv.org./abs/1010. 4784.
点击查看大图
计量
- 文章访问数: 985
- HTML全文浏览量: 72
- PDF下载量: 589
- 被引次数: 0