• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

非支配排序遗传算法的动压轴承形状多目标优化

庞晓平 陈进

庞晓平, 陈进. 非支配排序遗传算法的动压轴承形状多目标优化[J]. 西南交通大学学报, 2012, 25(4): 639-645. doi: 10.3969/j.issn.0258-2724.2012.04.017
引用本文: 庞晓平, 陈进. 非支配排序遗传算法的动压轴承形状多目标优化[J]. 西南交通大学学报, 2012, 25(4): 639-645. doi: 10.3969/j.issn.0258-2724.2012.04.017
PANG Xiaoping, CHEN Jin. Multi-objective Shape Optimization of Hydrodynamic Journal Bearings Using Non-dorminated Sorting Genetic Algorithm Ⅱ[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 639-645. doi: 10.3969/j.issn.0258-2724.2012.04.017
Citation: PANG Xiaoping, CHEN Jin. Multi-objective Shape Optimization of Hydrodynamic Journal Bearings Using Non-dorminated Sorting Genetic Algorithm Ⅱ[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 639-645. doi: 10.3969/j.issn.0258-2724.2012.04.017

非支配排序遗传算法的动压轴承形状多目标优化

doi: 10.3969/j.issn.0258-2724.2012.04.017
基金项目: 

国家自然科学基金资助项目(51005257)

Multi-objective Shape Optimization of Hydrodynamic Journal Bearings Using Non-dorminated Sorting Genetic Algorithm Ⅱ

  • 摘要: 为了克服以偏心率为初始参数的轴承优化模型优化结果局限于原始形状的缺点,提出用傅里叶级数表示通用膜厚方程,建立了多目标形状优化设计数学模型.应用基于非支配排序遗传算法,以最小功耗和最小侧漏流速为目标、最小油膜厚度和最小承载力为限制条件,以通用膜厚方程系数为设计变量,进行了轴承形状的多目标优化设计,并用Matlab偏微分方程工具箱求解基于通用膜厚的控制方程.实例分析结果表明:基于通用膜厚方程的多目标优化后的轴承形状不受固有型线的限制;在保证最大承载力的基础上,优化后的非圆轴承与仅以最大承载力为单目标优化的结果相比,最小功耗下降了80.8%,最小侧漏流速比优化前下降了3个数量级,并得出了Pareto最优解集.

     

  • DOBRICA M B, FILLON M, PASCOVICI M D. Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(8): 737-750.
    HIRANI H. Multiobjective optimization of a journal bearing using the Pareto optimality concept[J]. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology, 2004, 218(2): 323-336.
    HIRANI H , SUH N P. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches[J]. Tribology Int., 2005, 38(1): 481-491.
    HIRANI H. Multiopjective optimization of journal bearing using mass conserving and genetic algorithms[J]. J. Engineering Tribology, 2005, 219(1): 235-249.
    ZENGEYA M, GADALA M. Optimization of journal bearings using a hybrid scheme[J]. J. Engineering Tribology, 2007, 21(3): 591-609.
    HIRANI H, RAO T V V L N, ATHRE K, et al. Rapid performance evaluation of journal bearing[J]. Tribology Int., 1997, 11(6): 825-834.
    BOEDO S, ESHKABLILOV S L. Optimal shape design of steadily loaded journal bearings using genetic algorithms[J]. Tribology Transactions, 2003, 46(1): 134-143.
    BOEDO S, BOOKER J F. Dynamics of offset journal bearings-revisited[J]. Proc. IMechE, 2009, 223(1): 359-369.
    庞晓平,陈进,王家序. 采用通用膜厚方程的动压径向轴承形状优化[J]. 西安交通大学学报,2009,43(1): 57-61. PANG Xiaoping, CHEN Jin, WANG Jiaxu. Shape optimization for hydrodynamic journal bearings based on general film thickness equation[J]. Journal of Xi'an Jiaotong University, 2009, 43(1): 57-61.
    MATSUDA K, KANEMITSU Y, KIJIIIMOTO S. Optimal clearance configuration of fluid-film journal bearings for stability improvement[J]. ASME J. Tribol., 2004, 126(2): 125-131.
    ERIK S. Fixed-geometry hydrodynamic bearing with enhanced stability characteristics[J]. Tribology Transaction, 2005, 48(3): 82-92.
    庞晓平,陈进. 基于泛函的动压轴承集成型线理论研究[J]. 润滑与密封,2008,33(2): 71-74. PANG Xiaoping, CHEN Jin. Study on integration theory of hydrodynamic bearings profiles based on functional theory[J]. Lubrication and Sealed, 2008, 33(2): 71-74.
    邹书蓉,黄晓滨,张洪伟. 有容量约束车辆路径问题的多目标遗传算法[J]. 西南交通大学学报,2009,44(5): 782-786. ZOU Shurong, HUANG Xiaobin, ZHANG Hongwei. Multi-objective genetic algorithm for solving capacitated vehicle routing problems[J]. Journal of Southwest Jiaotong University, 2009, 44(5): 782-786.
    余进,何正友,钱清泉. 基于微粒群算法的多目标列车运行过程优化[J]. 西南交通大学学报,2010,45(1): 70-75. YU Jin, HE Zhengyou, QIAN Qingquan. Multi-objective train operation optimization based on particle swarm algorithm[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 70-75.
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 加载中
计量
  • 文章访问数:  1308
  • HTML全文浏览量:  103
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-19
  • 刊出日期:  2012-08-25

目录

    /

    返回文章
    返回