非支配排序遗传算法的动压轴承形状多目标优化
doi: 10.3969/j.issn.0258-2724.2012.04.017
Multi-objective Shape Optimization of Hydrodynamic Journal Bearings Using Non-dorminated Sorting Genetic Algorithm Ⅱ
-
摘要: 为了克服以偏心率为初始参数的轴承优化模型优化结果局限于原始形状的缺点,提出用傅里叶级数表示通用膜厚方程,建立了多目标形状优化设计数学模型.应用基于非支配排序遗传算法,以最小功耗和最小侧漏流速为目标、最小油膜厚度和最小承载力为限制条件,以通用膜厚方程系数为设计变量,进行了轴承形状的多目标优化设计,并用Matlab偏微分方程工具箱求解基于通用膜厚的控制方程.实例分析结果表明:基于通用膜厚方程的多目标优化后的轴承形状不受固有型线的限制;在保证最大承载力的基础上,优化后的非圆轴承与仅以最大承载力为单目标优化的结果相比,最小功耗下降了80.8%,最小侧漏流速比优化前下降了3个数量级,并得出了Pareto最优解集.
-
关键词:
- 动压径向轴承 /
- 形状优化 /
- NSGA-Ⅱ /
- 多目标优化 /
- Pareto最优解集
Abstract: In order to overcome the shortcoming caused by taking the eccentricity as the initial design variables in the shape optimization model, i.e., the optimized shape was localized in the original shape, a new mathematic model of multi-objective shape optimization for hydrodynamic journal bearings was built through the general film thickness equation based on the Fourier series. In the model, the objective function is minimization of oil leakage and power loss, which is subjected to the minimum oil film thickness and the minimum bearing capacity, and the coefficients of general oil film thickness are design variables. The multi-objective optimization for the profile design of a hydrodynamic journal bearing is accomplished using a modified non-dominated sorting genetic algorithm II (NSGA-Ⅱ). The governing equations based on the general film thickness were solved by Matlab PDE (partial differential equation) toolbox. The results of a case study show that the bearing shape obtained by multi-objective optimization based on the general film thickness equation is not limited by the original shape. In addition,a Pareto-optimal set is obtained, where, for one of the optimized non-circle bearings with the maximum load capacity, the power loss and leakage rate are decreased by 80.8% and three orders of magnitude, respectively, compared with that just taking the load capacity as the objective function. -
DOBRICA M B, FILLON M, PASCOVICI M D. Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(8): 737-750. HIRANI H. Multiobjective optimization of a journal bearing using the Pareto optimality concept[J]. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology, 2004, 218(2): 323-336. HIRANI H , SUH N P. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches[J]. Tribology Int., 2005, 38(1): 481-491. HIRANI H. Multiopjective optimization of journal bearing using mass conserving and genetic algorithms[J]. J. Engineering Tribology, 2005, 219(1): 235-249. ZENGEYA M, GADALA M. Optimization of journal bearings using a hybrid scheme[J]. J. Engineering Tribology, 2007, 21(3): 591-609. HIRANI H, RAO T V V L N, ATHRE K, et al. Rapid performance evaluation of journal bearing[J]. Tribology Int., 1997, 11(6): 825-834. BOEDO S, ESHKABLILOV S L. Optimal shape design of steadily loaded journal bearings using genetic algorithms[J]. Tribology Transactions, 2003, 46(1): 134-143. BOEDO S, BOOKER J F. Dynamics of offset journal bearings-revisited[J]. Proc. IMechE, 2009, 223(1): 359-369. 庞晓平,陈进,王家序. 采用通用膜厚方程的动压径向轴承形状优化[J]. 西安交通大学学报,2009,43(1): 57-61. PANG Xiaoping, CHEN Jin, WANG Jiaxu. Shape optimization for hydrodynamic journal bearings based on general film thickness equation[J]. Journal of Xi'an Jiaotong University, 2009, 43(1): 57-61. MATSUDA K, KANEMITSU Y, KIJIIIMOTO S. Optimal clearance configuration of fluid-film journal bearings for stability improvement[J]. ASME J. Tribol., 2004, 126(2): 125-131. ERIK S. Fixed-geometry hydrodynamic bearing with enhanced stability characteristics[J]. Tribology Transaction, 2005, 48(3): 82-92. 庞晓平,陈进. 基于泛函的动压轴承集成型线理论研究[J]. 润滑与密封,2008,33(2): 71-74. PANG Xiaoping, CHEN Jin. Study on integration theory of hydrodynamic bearings profiles based on functional theory[J]. Lubrication and Sealed, 2008, 33(2): 71-74. 邹书蓉,黄晓滨,张洪伟. 有容量约束车辆路径问题的多目标遗传算法[J]. 西南交通大学学报,2009,44(5): 782-786. ZOU Shurong, HUANG Xiaobin, ZHANG Hongwei. Multi-objective genetic algorithm for solving capacitated vehicle routing problems[J]. Journal of Southwest Jiaotong University, 2009, 44(5): 782-786. 余进,何正友,钱清泉. 基于微粒群算法的多目标列车运行过程优化[J]. 西南交通大学学报,2010,45(1): 70-75. YU Jin, HE Zhengyou, QIAN Qingquan. Multi-objective train operation optimization based on particle swarm algorithm[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 70-75. DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
点击查看大图
计量
- 文章访问数: 1308
- HTML全文浏览量: 103
- PDF下载量: 428
- 被引次数: 0