• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于灰色自适应粒子群LSSVM的铁路货运量预测

耿立艳 梁毅刚

耿立艳, 梁毅刚. 基于灰色自适应粒子群LSSVM的铁路货运量预测[J]. 西南交通大学学报, 2012, 25(1): 144-150. doi: 10.3969/j.issn.0258-2724.2012.021.01.024
引用本文: 耿立艳, 梁毅刚. 基于灰色自适应粒子群LSSVM的铁路货运量预测[J]. 西南交通大学学报, 2012, 25(1): 144-150. doi: 10.3969/j.issn.0258-2724.2012.021.01.024
GENG Liyan, LIANG Yigang. Prediction of Railway Freight Volumes Based on Grey Adaptive Particle Swarm Least Squares Support Vector Machine Model[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 144-150. doi: 10.3969/j.issn.0258-2724.2012.021.01.024
Citation: GENG Liyan, LIANG Yigang. Prediction of Railway Freight Volumes Based on Grey Adaptive Particle Swarm Least Squares Support Vector Machine Model[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 144-150. doi: 10.3969/j.issn.0258-2724.2012.021.01.024

基于灰色自适应粒子群LSSVM的铁路货运量预测

doi: 10.3969/j.issn.0258-2724.2012.021.01.024
基金项目: 

国家软科学研究计划资助项目(2010GXQ5D320)

河北省交通运输厅科技计划资助项目(R-2010100)

教育部人文社会科学研究青年基金资助项目(11YJC790048)

详细信息
    作者简介:

    耿立艳(1979-),女,讲师,博士,研究方向为智能预测方法及应用,E_mail:gengliyan_28117@yahoo.com.cn

Prediction of Railway Freight Volumes Based on Grey Adaptive Particle Swarm Least Squares Support Vector Machine Model

  • 摘要: 为了提高铁路货运量的预测精度及建模速度,将灰色预测模型(GM(1,1))、最小二乘支持向量机(LSSVM)和自适应粒子群优化(APSO)算法相融合,建立了灰色自适应粒子群最小二乘支持向量机(GM-APSO-LSSVM)预测模型.通过灰色预测模型中的灰色序列算子,弱化原始数列随机性,挖掘数列中蕴含的规律,利用最小二乘支持向量机计算简便、求解速度快、非线性映射能力强的特点进行预测,并采用自适应粒子群算法优化选择LSSVM参数.对我国铁路货运量的实例分析表明:用该模型得到的评价指标RMSE、MAE、MPE和Theil不等系数分别为0.062 8、0.052 3、0.016 2和0.010 7,均小于其它模型,预测性能好;用APSO算法搜索LSSVM最优参数的时间为55.656 s,比传统交叉验证法减少了10.462 s;2006~2009年的预测相对误差分别为0.39%、-1.67%、1.44%和4.75%,适用于铁路货运量的短期预测.

     

  •  [1] 李红启,刘凯. 基于分形理论的铁路货运量分析[J]. 铁道学报,2003,25(3): 19-23.      LI Hongqi, LIU Kai. Analysis of railway freight volumes based on fractal theory[J. Journal of the China Railway Society, 2003, 25(3): 19-23.       [2] 李红启,刘凯. 基于Rough Set理论的铁路货运量预测[J]. 铁道学报,2004,26(3): 1-7.      LI Hongqi, LIU Kai. Prediction of railway freight volumes based on rough set theory[J]. Journal of the China Railway Society, 2004, 26(3): 1-7.       [3] 刘志杰,季令,叶玉玲,等. 基于径向基神经网络的铁路货运量预测[J]. 铁道学报,2006,28(5): 1-5.      LIU Zhijie, JI Ling, YE Yuling, et al. Study on prediction of railway freight volumes based on RBF neural network[J]. Journal of the China Railway Society, 2006, 28(5): 1-5.       [4] 郭玉华,陈治亚,冯芬玲,等. 基于经济周期的铁路货运量神经网络预测研究[J]. 铁道学报,2010,32(5): 1-6.      GUO Yuhua, CHEN Zhiya, FENG Fenling, et al. Railway freight volume forecasting of neural network based on economic cycles[J]. Journal of the China Railway Society, 2010, 32(5): 1-6.       [5] 周波. 基于复杂网络理论的铁路货运量预测[J]. 铁道货运,2008(3): 20-22.      ZHOU Bo. Prediction of railway freight volumes based on complex network theory[J]. Railway Freight Transport, 2008(3): 20-22.       [6] 白晓勇,郎茂祥. 铁路货运量预测的改进BP神经网络方法[J]. 交通运输系统工程与信息,2006,6(6): 158-162.      BAI Xiaoyong, LANG Maoxiang. An improved BP neural network in the railway freight volume forecast[J.] Journal of Transportation Systems Engineering and Information Technology, 2006, 6(6): 158-162.       [7] 张诚,周湘峰. 基于灰色预测-马尔可夫链定性分析的铁路货运量预测[J]. 铁道学报,2007,29(5): 15-21.      ZHANG Cheng, ZHOU Xiangfeng. Prediction of railway freight volumes based on gray forecast-Markov chain qualitative analysis[J]. Journal of the China Railway Society, 2007, 29(5): 15-21.       [8] 陈维荣,郑永康,戴朝华,等. 基于复Morlet小波SVM的负荷预测[J]. 西南交通大学学报,2009,44(5): 631-636.      CHEN Weirong, ZHENG Yongkang, DAI Chaohua, et al. Short-term load forecasting based on complex Morlet wavelet SVM[J]. Journal of Southwest Jiaotong University, 2009, 44(5): 631-636.       [9] 赵闯,刘凯,李电生. 支持向量机在货运量预测中的应用研究[J]. 铁道学报,2004,26(4): 10-14.      ZHAO Chuang, LIU Kai, LI Diansheng. Research on application of support vector machine in freight volumes forecast[J]. Journal of the China Railway Society, 2004, 26(4): 10-14.       [10] 王治. 基于遗传算法-支持向量机的铁路货运量预测[J]. 计算机仿真,2010,27(12): 320-322.     WANG Zhi. Prediction of railway freight volume based on genetic algorithm-support vector machine[J]. Computer Simulation, 2010, 27(12): 320-322.      [11] SUYKENS J A K, VANDEVALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.      [12] 刘陆洲,肖建,王嵩. 基于在线LS-SVM的阶逆控制[J]. 西南交通大学学报,2009,44(3): 375-379.     LIU Luzhou, XIAO Jian, WANG Song. th-order inverse control based on online least square support vector machines[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 375-379.      [13] SHI Y, EBERHART R. A modified particle swarm optimizer[C]∥Proceedings of IEEE International Conference on Evolutionary Computation. Anchorage: [s. n., 1998: 69-73.      [14] 刘思峰,谢乃明. 灰色系统理论及其应用[M]. 4版. 北京:科学出版社,2008: 8-9.      [15] 陈维荣,关佩,邹月娴. 基于SVM的交通事件检测技术[J]. 西南交通大学学报,2011,46(1): 63-67.     CHEN Weirong, GUAN Pei, ZOU Yuexian. Automatic incident detection technology based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 63-67.      [16] 吉培荣,黄巍松,胡翔勇. 无偏灰色预测模型[J]. 系统工程与电子技术,2000,22(6): 6-7.     JI Peirong, HUANG Weisong, HU Xiangyong. An unbiased grey forecasting model[J]. Systems Engineering and Electronics, 2000, 22(6): 6-7.      [17] 张大海,江世芳,史开泉. 灰色预测公式的理论缺陷及改进[J]. 系统工程理论与实践,2002,22(8): 1-3.     ZHANG Dahai, JIANG Shifang, SHI Kaiquan. Theoretical defect of grey prediction formula and its improvement[J]. Systems Engineering: Theory and Practice, 2002, 22(8): 1-3.
  • 加载中
计量
  • 文章访问数:  1440
  • HTML全文浏览量:  79
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-20
  • 刊出日期:  2012-02-25

目录

    /

    返回文章
    返回