• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

结构动力方程的2种精细时程积分

范宣华 陈璞 慕文品

范宣华, 陈璞, 慕文品. 结构动力方程的2种精细时程积分[J]. 西南交通大学学报, 2012, 25(1): 109-114. doi: 10.3969/j.issn.0258-2724.2012.021.01.018
引用本文: 范宣华, 陈璞, 慕文品. 结构动力方程的2种精细时程积分[J]. 西南交通大学学报, 2012, 25(1): 109-114. doi: 10.3969/j.issn.0258-2724.2012.021.01.018
FAN Xuanhua, CHEN Pu, MU Wenpin. Two Precise Time-Integration Methods for Structural Dynamic Analysis[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 109-114. doi: 10.3969/j.issn.0258-2724.2012.021.01.018
Citation: FAN Xuanhua, CHEN Pu, MU Wenpin. Two Precise Time-Integration Methods for Structural Dynamic Analysis[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 109-114. doi: 10.3969/j.issn.0258-2724.2012.021.01.018

结构动力方程的2种精细时程积分

doi: 10.3969/j.issn.0258-2724.2012.021.01.018
基金项目: 

中国工程物理研究院十一五暠预研重大资助项目(2007-ZDXM03)

详细信息
    作者简介:

    范宣华(1981-),男,博士研究生,研究方向为结构动力学,电话:0816-2495311,E-mail:hx2fan@263.ne

Two Precise Time-Integration Methods for Structural Dynamic Analysis

  • 摘要: 分析了增维精细时程积分和扩展精细时程积分2种方法在求解结构动力方程中的异同.在演变随机激 励为多项式、指数函数以及正弦/余弦(虚指数)函数组合的一般形式下,分别推导出了2种方法所对应的显式离 散递推表达式.结果表明:2种积分方法所对应的显式递推格式最终都转化为积分步长的多项式函数,并且在相 同泰勒级数展开项的条件下,扩展精细积分除包含增维精细积分的所有递推项外,还包含一些高阶小项,理论上 具有更高的精度;忽略高阶小项,2种方法尽管算法实现不同,离散递推格式完全一致;工程实例计算表明,二者 计算精度都可以达到10位以上有效数字,扩展精细积分计算时间较增维精细积分少一个数量级.

     

  •  李斌,刘学毅. 客运专线铁道车辆随机振动特性[J]. 西南交通大学学报,2010,45(2): 191-196.      LI Bin, LIU Xueyi. Random vibration property of high-speed railway vehicle in passeenger dedicated line[J]. Journal of Southwest Jiaotong University, 2010, 45(2): 191-196.       [2] TOC W S. Response statistics of discrete structures to non-stationary random processes[J]. Journal of Sound Vibration, 1986, 105(6): 217-231.       [3] 林家浩. 随机振动的虚拟激励法[M]. 北京:科学出版社,2004: 42-54.       [4] 王波,张海龙,徐丰. 考虑拉索局部振动的斜拉桥地震时程响应分析 [J]. 西南交通大学学报,2008,43(4): 441-446.      WANG Bo, ZHANG Hailong, XU Feng. Seismic time-history response analysis of cable-stayed bridge with local cable vibration[J]. Journal of Southwest Jiaotong University, 2008, 43(4): 441-446.       [5] 赵丽滨,王寿梅. 结构动力分析中时间积分方法进展[J]. 力学与实践,2001,23(2): 10-15.      ZHAO Libin, WANG Shoumei. Progress of time integration methods in structural dynamics analysis[J]. Mechanics and Engineering, 2001, 23(2): 10-15.       [6] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报,1994,34(2): 131-136.      ZHONG Wanxie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136.       [7] ZHONG Wanxie. Review of a high-efficiency algorithm series for structural responses[J]. Progress in Natural Science, 1996, 6(3): 257-268.       [8] 张文首,林家浩,刘婷婷,等. 结构非平稳随机响应的增维精细时程积分[J]. 振动与冲击,2006,25(5): 18-20.      ZHANG Wenshou, LIN Jiahao, LIU Tingting, et al. Precise time-integration method with augmented matrix for analysis of non-stationary random responses[J]. Journal of Vibration and Shock, 2006, 25(5): 18-20.       [9] 张文首,林家浩,于骁. 受演变随机激励结构响应的增维精细时程积分法[J]. 大连理工大学学报,2007,47(2): 160-164.      ZHANG Wenshou, LIN Jiahao, YU Xiao. Precise time-integration method with augmented matrix for structural responses to evolutionary random excitations[J]. Journal of Dalian University of Technology, 2007, 47(2): 160-164.       [10] LIN Jiahao, SHEN Weiping, WILLIAMS F W. Accurate high speed coinputation of nonstationary random seismic response[J]. Engineering Structures, 1997, 19(7): 586-593.     [ 11] 谭述君,钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报,2007,39(3): 374-381.     TAN Shujun, ZHONG Wanxie. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 374-381.      [12] 幕文品. 受演变随机激励结构响应的扩展精细积分方法[D.] 北京:北京大学,2009: 39-42.      [13] 富明慧,刘祚秋,林敬华. 一种广义精细积分法[J]. 力学学报,2007,39(5): 672-677.     FU Minghui, LIU Zuoqiu, LIN Jinghua. A generalized precise time step integration method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 672-677.     [ 14] 富明慧,林敬华. 精细积分法在非线性动力学问题中的应用[J]. 中山大学学报,2008,47(3): 1-5.     FU Minghui, LIN Jinghua. Precise time step integration method in nonlinear dynamics[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(3): 1-5.      [15] 张继峰,邓子辰. 结构动力方程的增维分块精细积分法[J]. 振动与冲击,2008,27(12): 88-90.     ZHANG Jifeng, DENG Zichen. Dimensional increment and partitioning precise integration method for structural dynamic equation[J]. Journal of Vibration and Shock, 2008, 27(12): 88-90.      [16] 高淑英,沈火明. 线性振动教程[M]. 北京:中国铁道出版社,2003: 1-5.
  • 加载中
计量
  • 文章访问数:  1539
  • HTML全文浏览量:  77
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-14
  • 刊出日期:  2012-02-25

目录

    /

    返回文章
    返回