Self-synchronization and Stability of Two-Times Frequency Shaker Excited by Bi-shaft
-
摘要: 利用振动筛的运动微分方程和两激振器的回转运动方程,建立了双轴二倍频自同步振动筛同步相位差 角的微分方程;通过研究该微分方程状态方程的平衡点,提出了振动筛实现二倍频自同步的必要条件,应用 Lyapunov稳定性理论,建立了振动筛的运动稳定性条件,并通过实例计算进行了验证.结果表明:振动筛满足同 步条件和稳定性条件时可以实现二倍频的自同步并稳定运转;当扭振固有角频率与低速轴激振角频率之比的平 方等于4/7时,振动筛处于临界状态,当该值小于4/7时,振动筛的运动稳定.Abstract: Differential equations of phase angle differences between two exciting shafts of a bi-frequency self-synchronous shaker were derived based on the differential equations of shaker motion and those of rotation of the two exciting shafts. The necessary conditions for self-synchronization of the two shafts was obtained by finding the equilibrium point of the status equations, and the stability condition of the shaker was determined by applying the Lyapunov stability theory. A simulation example was presented. The results show that the second power of ratio of the natural torsional frequency of shaker to the exciting frequency of lower speed shaft is a criterion (4/7 in this example), below the criterion the motion of the shaker is stable.
-
Key words:
- bi-shaft shaker /
- bi-frequency /
- self-synchronization /
- necessary condition /
- stability
-
BLEKHMAN I I. Synchronization in science and technology[M]. New York: ASME Press, 1988: 61-156. [2] BLEKHMAN I I, FRADKOV A L, TOMCHINA O P, et al. Self-synchronization and controlled synchronization: general definition and example design[J]. Mathematics and Computers in Simulation, 2002, 58: 367-384. [3] 赵春雨,王得刚,张昊,等. 同向回转双机驱动振动系统的频率俘获[J]. 应用力学学报,2009,26(2): 283-287. ZHAO Chunyu, WANG Degang, ZHANG Hao, et al. Frequency capture of vibration system with two-motor drives rotating in same direction[J]. Chinese Journal of Applied Mechanics, 2009, 26(2): 283-287. [4] 闻邦椿. 振动利用工程学科近期的发展[J]. 振动工程学报,2007,20(5): 427-434. WEN Bangchun. Recent development of the course vibratory utilization engineering[J]. Journal of Vibration Engineering, 2007, 20(5): 427-434. [5] 朱维兵. 钻井液振动筛筛分建模及数值计算[J]. 西南交通大学学报,2003,38(5): 605-608. ZHU Weibing. Screening model for drilling fluid shale shaker and computer simulation[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 605-608. [6] POTAPENKO M A. Slow vibration of unbalanced rotors during the disturbance of self-synchronization conditions[J]. Journal of Machinery Manufacture and Reliability, 2008, 37(3): 228-229. [7] BALTHAZAR M, JOSE M, JORGE L, et al. Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure[J.] Journal of Vibration and Control, 2004, 10(12): 1739-1748. [8] DIMENTBERG M, COBB E, MENSCHING J]. Self-synchronization of transient rotations in multiple shaft systems[J]. Journal of Vibration and Control, 2001,7(2): 221-232. [9] 胡毅,崔广平,朱满平. 偏心块激振器式复频振网筛[J]. 煤矿机械,2007,28(2): 136-137. HU Yi, CUI Guangping, ZHU Manping. Complex-frequency vibrating screen of eccentric block vibrator[J]. Coal Mine Machinery, 2007, 28(2): 136-137. [10] 时勇,胡毅,朱满平. 复频筛动态特性及其工艺参数的研究[J]. 煤矿机械,2006,27(4): 586-587. SHI Yong, HU Yi, ZHU Manping. Study on kinetic characteristic and technical parameters of complex-frequency screen[J]. Coal Mine Machinery, 2006, 27(4): 586-587. [11] BLEKHMAN I I, LANDA P S. Effect of conjugate resonances and bifurcations under the biharmonic excitation of a pendulum with a vibrating suspension axis[J]. Doklady Physics, 2004, 49(3): 187-190. [12] BLEKHMAN I I, LANDA P S. Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation[J]. International Journal of Non-Linear Mechanics, 2004, 39(3): 421-426. [13] WEN Bangchun, FAN Jian, ZHAO Chunyu, et al. Vibratory synchronization and controlled synchronization in engineering[M]. Beijing: Science Press, 2009: 65-78.
点击查看大图
计量
- 文章访问数: 1823
- HTML全文浏览量: 55
- PDF下载量: 540
- 被引次数: 0