Failure Prediction and Post-Failure Behavior of Typical Rock under Triaxial Compression
-
摘要: 为探讨岩石在三向应力下的变形、破坏规律及其峰后本构模型,对不同围压下石灰岩和砂岩进行了三 轴压缩全过程试验,分析了2种典型岩石的变形、破坏规律和峰前、峰后承载能力与变形之间的关系,在此基础 上建立了岩石的本构模型.研究结果表明:石灰岩在低围压下易于发生失稳破坏,在高围压下较难发生失稳破 坏,围压的增大对岩爆有一定抑制作用;同种岩石峰值应力时对应的环向应变不随围压的改变而改变,近似为一 定值,可以将其作为岩石破坏的一个预警指标;石灰岩的剪胀效应发生在破坏后,而砂岩在轴向应力达到其峰值 的70%左右时就开始出现剪胀;岩石峰后应力与其承载能力相等,由侧向变形控制,随侧向变形增大逐渐衰减 至残余强度;基于本构模型的计算结果与三轴压缩试验结果吻合较好.Abstract: In order to research the failure prediction and post-failure constitutive model of rock under triaxial stress, the triaxial compression tests of limestone and sandstone were conducted under different confining pressures, the regularities of deformation and failure and the relationship between strength and deformation in the whole loading process were analyzed. Based on the test result, a constitutive model for rock was founded. The research results show that the failure mode of limestone is stability loss under a low confining pressure condition, and high confining pressure can restrain rock burst to some extent. The circumferential strain corresponding to the peak stress is nearly a constant under different confining pressures, as a result, it can be taken as an index of rock failure prediction. The shear dilatancy occurs in the post-failure to limestone and at the moment when the axial stress reaches 70% of the peak stress to sandstone. The stress of rock is equal to its strength in the post-failure state, controlled by the lateral deformation, and decreases to the residual strength as the lateral deformation increases. The calculational results based on the constitutive model are consistent with the experimental results under triaxial compression.
-
Key words:
- rock mechanics /
- triaxial stress /
- failure prediction /
- lateral deformation /
- post-failure behavior
-
何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16): 2803-2813. HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. [2] 钱七虎. 非线性岩石力学的新进展:深部岩体力学的若干问题[C]∥中国岩石力学与工程学会. 第八次全国岩石力学与工程学术大会论文集. 北京:科学出版社,2004: 10-17. [3] 钱鸣高. 20年来采场围岩控制理论和实践的回顾[J]. 中国矿业大学学报,2000,19(1): 1-4. QIAN Minggao. Review of the theory and practice of strata control around longwall face in recent 20 years[J]. Journal of Chinese University of Mining and Technology, 2000, 19(1): 1-4. [4] MALAN D F, SPOTTISWOODE S M. Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations[C]∥Rock Burst and Seismicity in Minest. Rotterdam: A. A. Balkema, 1997: 173-177. [5] SWLLER E J, KLERCK P. Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J]. Tunneling and Under-ground Space Technology, 2000, 15(4): 463-469. [6] KIDYBINSKI A, DUBINSKI J. Strata control in deep mines[M]. Rotterdam: A. A. Balkema, 1990: 7-19. [7] 姜耀东,赵毅鑫,刘文岗,等. 深部开采中巷道底鼓问题的研究[J]. 岩石力学与工程学报,2004,23(7): 2396-2401. JIANG Yaodong, ZHAO Yixin, LIU Wengang, et al. Research on floor heave of roadway in deep miming[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 2396-2401. [8] 谢和平. 深部高应力下的资源开采:现状、基础科学问题与展望[C]∥科学前沿与未来(第六集). 北京:中国环境科学出版社,2002: 179-191. [9] 谢和平,彭瑞东,鞠杨,等. 基于断裂力学与损伤力学的岩石强度理论研究进展[J]. 自然科学进展,2004,14(10): 1086-1092. XIE Heping, PENG Ruidong, JU Yang, et al. Progress in strength theory of rocks based on fracture mechanics and damage mechanics[J]. Progress in Nature, 2004, 14(10): 1086-1092. [10] 刘齐建,杨林德,曹文贵. 岩石统计损伤本构模型及其参数反演[J]. 岩石力学与工程学报,2005,24(4): 616-621. LIU Qijian, YANG Linde, CAO Wengui. Statistical damage constitutive model for rock and back analysis of its parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 616-621. [11] LEMAITRE J. How to use damage mechanics[J. Nuclear Engineering and Design, 1984, 80(1): 233-245. [12] 曹文贵,方祖烈,唐学军. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报,1998,17(6): 628-633. CAO Wengui, FANG Zulie, TANG Xuejun. A study of statistical constitutive model for soft and damage rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 628-633. [13] 尤明庆. 岩石的力学性质[M]. 北京:地质出版社,2007: 32-34. [14] 谢和平. 分形-岩石力学导论[M]. 北京:科学出版社,2005: 249-261. [15] 李庶林,唐海燕. 不同加载条件下岩石材料破裂过程的声发射特性研究[J]. 岩土工程学报,2010,32(1): 147-152. LI Shulin, TANG Haiyan. Acoustic emission charac-teristics in failure process of rock under different uniaxial compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 147-152. [16] 徐志英. 岩石力学[M]. 北京:中国水利水电出版社,1993: 31-32. [17] 尤明庆,华安增. 岩石试样的三轴卸围压试验[J]. 岩石力学与工程学报,1998,17(1): 24-29. YOU Mingqing, HUA Anzeng. Triaxial confining depressure test of rock sample[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(1): 24-29. [18] 王东,王丁,韩小刚,等. 侧向变形控制下的灰岩破坏规律及其峰后本构关系[J]. 煤炭学报,2010,35(12): 2022-2027. WANG Dong, WANG Ding, HAN Xiaogang, et al. Limestone failure law and post-failure constitutive relation in the control of lateral deformation[J]. Journal of China Coal Society, 2010, 35(12): 2022-2027.
点击查看大图
计量
- 文章访问数: 1346
- HTML全文浏览量: 68
- PDF下载量: 402
- 被引次数: 0