• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于指数形式渗流的成层地基一维固结半解析解

李传勋 谢康和 胡安峰

李传勋, 谢康和, 胡安峰. 基于指数形式渗流的成层地基一维固结半解析解[J]. 西南交通大学学报, 2012, 25(1): 84-89. doi: 10.3969/j.issn.0258-2724.2012.021.01.014
引用本文: 李传勋, 谢康和, 胡安峰. 基于指数形式渗流的成层地基一维固结半解析解[J]. 西南交通大学学报, 2012, 25(1): 84-89. doi: 10.3969/j.issn.0258-2724.2012.021.01.014
LI Chuanxun, XIE Kanghe, HU Anfeng. Semi-analytical Solutions for One-Dimensional Consolidation of Layered Soil Obeying Exponential Flow Law[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 84-89. doi: 10.3969/j.issn.0258-2724.2012.021.01.014
Citation: LI Chuanxun, XIE Kanghe, HU Anfeng. Semi-analytical Solutions for One-Dimensional Consolidation of Layered Soil Obeying Exponential Flow Law[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 84-89. doi: 10.3969/j.issn.0258-2724.2012.021.01.014

基于指数形式渗流的成层地基一维固结半解析解

doi: 10.3969/j.issn.0258-2724.2012.021.01.014
基金项目: 

国家自然科学基金资助项目(50878191,51109092)

Semi-analytical Solutions for One-Dimensional Consolidation of Layered Soil Obeying Exponential Flow Law

  • 摘要: 为了计算基于指数形式渗流的成层地基一维固结变形,将指数形式的渗流模型引入传统的成层地基一维固结理论,建立了变荷载条件下的控制微分方程;采用解析法与数值离散相结合的半解析法对控制方程进行求解;在指数形式渗流退化为达西渗流的条件下,将半解析法的计算结果与解析解进行比较,验证了半解析法计算结果的可靠性.最后,结合某双层地基固结实例对不同参数时的固结性状进行了分析.结果表明:用半解析法计算基于指数形式渗流的成层地基一维固结简便、可靠;上层土比下层土的渗流指数对固结速率的影响显著;压缩性小、渗透性大的土层越厚,成层地基的固结速率越快;加载速率越快,固结速率越快.

     

  •  HANSBO S. Consolidation of clay with special reference to influence of vertical drains[J]. Swedish Geotechnical Institute, 1960, 18: 45-50. [2] MILLER R J, LOW P E. Threshold gradient for water flow in clay systems[J]. Soil Science Society of American Journal, 1963, 27(6): 605-609. [3] ELNAGGAK H A, KRIZEK R J. Effect of non-Darcy flow on time rate of consolidation[J]. Journal of the Franklin Institute, 1973, 296(5): 323-337.                                               [4] DUBIN B, MOULIN G. Influence of a critical gradient on the consolidation of clays[C]∥YONG R N, TOWNSEND F C. Consolidation of Soils: Testing and Evaluation. West Conshohocken: American Society for Testing and Materials, 1986: 354-377. [5] HANSBO S. Consolidation equation valid for both Darcian and non-Darcian flow[J]. Geotechnique, 2001, 51(1): 51-54.   [6] SLEPICKA F. Contribution to the solution of the filtration law[C]∥International Union of Geodesy and Geophysics, Commission of Subterranean Waters. Helsinkl, Finland: [s.n., 1960: 245-358.                          [7] 齐添,谢康和,胡安峰,等. 萧山黏土非达西渗流性状的试验研究[J]. 浙江大学学报:工学版,2007,41(6): 1023-1028.        QI Tian, XIE Kanghe, HU Anfeng, et al. Laboratorial study on non-Darcy seepage in Xiaoshan clay[J]. Journal of Zhejiang University: Engineering Science, 2007, 41(6): 1023-1028.                                    [8] 刘忠玉,孙丽云,乐金朝,等. 基于非Darcy 渗流的饱和黏土一维固结理论[J]. 岩石力学与工程学报,2009,28(5): 973-979. LIU Zhongyu, SUN Liyun, YUE Jinchao, et al. One-dimensional consolidation theory of saturated clay based on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 973-979.                         [9] 鄂建,陈刚,孙爱荣. 考虑低速非Darcy 渗流的饱和黏性土一维固结分析[J]. 岩土工程学报,2009,31(7): 1115-1119.        E Jian, CHEN Gang, SUN Airong. One-dimensional consolidation of saturated cohesive soil considering non-Darcy flows[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1115-1119.                              [10] PASCAL F, PASCAL H, MURRAY D W. Consoli-dation with threshold gradients[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(3): 247-261. [11] 谢海澜,武强,赵增敏,等. 考虑非达西流的弱透水层固结计算[J]. 岩土力学,2007,28(5): 1061-1065. XIE Hailan, WU Qiang, ZHAO Zengmin, et al. Consolidation computation of aquitard considering non-Darcy flow[J]. Rock and Soil Mechanics, 2007, 28(5): 1061-1065. [12] SCHMIDT J D, WESTMANN R A. Consolidation of porous media with non-Darcy flow[J]. Journal of the Engineering Mechanics Division, 1973, EM6: 1201-1216. [13] 李传勋,谢康和,卢萌盟,等. 变荷载下基于指数形式渗流一维固结分析[J]. 岩土力学,2011,32(2): 553-559. LI Chuanxun, XIE Kanghe, LU Mengmeng, et al. One-dimensional consolidation analysis considering exponential flow law and time-dependent loading[J]. Rock and Soil Mechanics, 2011, 32(2): 553-559. [14] 谢康和,郑辉,李冰河,等. 变荷载下成层地基一维非线性固结分析[J]. 浙江大学学报:工学版,2003,37(4): 426-431. XIE Kanghe, ZHENG Hui, LI Binghe, et al. Analysis of one dimensional nonlinear consolidation of layered soils under time-dependent loading[J]. Journal of Zhejiang University: Engineering Science, 2003, 37(4): 426-431. [15] 谢康和,潘秋元. 变荷载下任意层地基一维固结理论[J]. 岩土工程学报,1995,17(5): 80-85. XIE Kanghe, PAN Qiuyuan. Theory of one-dimen-sional consolidation of layered soil under time-dependent loading[J]. Chinese Journal of Geo-technical Engineering, 1995, 17(5): 80-85.
  • 加载中
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  67
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-30
  • 刊出日期:  2012-02-25

目录

    /

    返回文章
    返回