• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

信息传播算法收敛的后门集

王晓峰 许道云 秦永彬

王晓峰, 许道云, 秦永彬. 信息传播算法收敛的后门集[J]. 西南交通大学学报, 2012, 25(1): 32-38,62. doi: 10.3969/j.issn.0258-2724.2012.021.01.006
引用本文: 王晓峰, 许道云, 秦永彬. 信息传播算法收敛的后门集[J]. 西南交通大学学报, 2012, 25(1): 32-38,62. doi: 10.3969/j.issn.0258-2724.2012.021.01.006
WANG Xiaofeng, XU Daoyun, QIN Yongbin. Backdoors of Message Propagation Algorithm Convergence[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 32-38,62. doi: 10.3969/j.issn.0258-2724.2012.021.01.006
Citation: WANG Xiaofeng, XU Daoyun, QIN Yongbin. Backdoors of Message Propagation Algorithm Convergence[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 32-38,62. doi: 10.3969/j.issn.0258-2724.2012.021.01.006

信息传播算法收敛的后门集

doi: 10.3969/j.issn.0258-2724.2012.021.01.006
基金项目: 

国家自然科学基金资助项目(60863005)

详细信息
    作者简介:

    王晓峰(1980-),男,博士研究生,研究方向为算法分析与设计,电话:15086011980,E-mail:wxf_gzu@163.com

Backdoors of Message Propagation Algorithm Convergence

  • 摘要: 为了探讨WP(警示传播)算法的收敛性,给出了WP算法收敛的后门集.通过对此后门集中的变元赋 值,可将布尔公式简化成其因子图为树型结构的子公式,WP算法在子公式上收敛.最后,设计了一个求解该后 门集的随机算法,并分析了该算法的可行性.结果表明,所提出的求解该后门集的随机算法是有效的.

     

  •   [1] CHEESEMAN P, KANEFSKY B,TAYLOR W M. Where the really hard problems are[C]∥Proceedings of the 12th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann,1991: 331-337.                                                                                                                                                                     [2] FRIEZE A M, MOLLOY M. The satisfiability threshold for randomly generated binary constraint satisfaction problems[J]. Proceedings of Random, 2006, 28(3): 323-339.                                                                                                                                                                     [3] ZHANG W. Phase transitions and backbones of 3-SAT and maximum 3-SAT[C]∥Proceedings of the 7th International Conference on Principles and Practice of Constraint Programming. London: Springer, 2001: 153-167.                                                                                                                                                                     [4] YANNAKAKIS M. Node and edge deletion NP-complete problems[C]∥Proceedings of the 10th Annual ACM Symposium on Theory of Computing. New York: ACM, 1978: 253-264.                                                                                                                                                                     [5] DUBOIS O, DEQUEN G. A backbone search heuristic for efficient solving of hard 3-SAT formulae[C]∥Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2001: 248-253.                                                                                                                                                                     [6] SLANEY J, WALSH T. Backbones in optimization and approximation[C]∥Proceedings of the 17th Interna-tional Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2001: 254-259.                                                                                                                                                                     [7] KILBY P, SLANEY J, THIEBAUX S, et al. Backbones and backdoors in satisfiability[C]∥Proceedings of the 20th National Conference on Artificial Intelligence. Pittsburgh: AAAI, 2005: 1368-1373.                                                                                                                                                                     [8] WILLIAMS R, GOMES C P, SELMAN B. Backdoors to typical case complexity[C]∥Proceedings of the 18th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2003: 1173-1178.                                                                                                                                                                     [9] NISHIMURA N, RAGDE P, SZEIDER S. Detecting backdoor sets with respect to horn and binary clauses[C]∥Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing. Vancouver: Elsevier, 2004: 96-103. [10] SAMER M, SZERDER S. Backdoor trees[C]∥Proceedings of the 23rd National Conference on Artificial Intelligence. Chicago: AAAI, 2008: 363-368.      [11] RUAN Y, KAUTZ H, HORVITZ E. The backdoor key: a path to understanding problem hardness[C]∥Proceedings of the 19th National Conference on Artificial Intelligence. [S.l.]: AAAI, 2004: 124-130.     [12] SELMAN B, KAUTZ H, COHEN B. Noise strategies for improving local search[C]∥Proceedings of the 12th National Conference on Artificial Intelligence. Seattle: AAAI, 1994: 337-343.      [13] MCALLESTER D, SELMAN B, KAUTZ H. Evidence for invariants in local search[C]∥Proceedings of the 14th National Conference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence. [S.l.]: AAAI, 1997: 321-326.      [14] MOSKEWICZ M W, MADIGAN C F, ZHAO Y. Chaff: Engineering an efficient SAT solver[C]∥Proceedings of the 38th Annual Design Automation Conference. New York: ACM, 2001: 530-535.      [15] BRAUNSTEIN A, MEZARD M, ZECCHINA R. Survey propagation: an algorithm for satisfiability[J]. Random Structures and Algorithms, 2005, 27(2): 201-226.    [16] MANEVA E, MOSSEL E, WAINWRIGHT M. A new look at survey propagation and its generalizations[J]. Journal of the ACM, 2007, 54(4): 1089-1098.      [17] 秦永彬,许道云. 警示传播算法的原理分析及算法改进[J]. 计算机工程与应用,2010,46(19): 1-6.     QIN Yongbin, XU Daoyun. Analysis and improvement of warning propagation algorithm[J]. Computer Engineering and Applications, 2010, 46(19): 1-6.      [18] 邵明,李光辉,李晓维. 求解可满足问题的调查传播算法以及步长的影响规律[J]. 计算机学报,2005,28(5): 849-855.     SHAO Ming, LI Guanghui, LI Xiaowei. Survey propagation algorithm for SAT and its performance dominated by step length[J]. Chinese Journal of Computers, 2005, 28(5): 849-855.      [19] 李韶华,张健. Survey propagation:一种求解SAT的高效算法[J]. 计算机科学,2005,32(1): 132-137.     LI Shaohua, ZHANG Jian. Survey propagation: an effective algorithm for solving SAT[J. Journal of Computer Sciense, 2005, 32(1): 132-137.      [20] KSCHISCHANG F, FREY B, LOELIGER H. Factor graph and the sum-product algorithm[J]. Information Theory, 2001, 47(1): 498-519.      [21] FEIGE U, MOSSEL E, VILENCHIK D. Complete convergence of message passing algorithms for some satisfiability problems[J]. Lecture Notes in Computer Science, 2006, 4110(1): 339-350.      [22] 王晓峰,许道云. 求解公式关键文字集的信息传播算法[J]. 山东大学学报:工学版,2011,41(3): 1-6.     WANG Xiaofeng, XU Daoyun. A message propagation algorithm computing set of key literals of a formula[J]. Journal of Shandong University: Engineering Science, 2011, 41(3): 1-6.
  • 加载中
计量
  • 文章访问数:  1275
  • HTML全文浏览量:  63
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-11
  • 刊出日期:  2012-02-25

目录

    /

    返回文章
    返回